↓ Skip to main content

Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha
Published in
Biotechnology for Biofuels and Bioproducts, July 2018
DOI 10.1186/s13068-018-1203-z
Pubmed ID
Authors

Olena O. Kurylenko, Justyna Ruchala, Roksolana V. Vasylyshyn, Oleh V. Stasyk, Olena V. Dmytruk, Kostyantyn V. Dmytruk, Andriy A. Sibirny

Abstract

Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 22%
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Student > Doctoral Student 1 4%
Lecturer > Senior Lecturer 1 4%
Other 2 9%
Unknown 7 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 35%
Agricultural and Biological Sciences 3 13%
Environmental Science 1 4%
Medicine and Dentistry 1 4%
Unknown 10 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2018.
All research outputs
#16,053,755
of 25,385,509 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#882
of 1,578 outputs
Outputs of similar age
#196,544
of 340,393 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#29
of 45 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,393 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.