↓ Skip to main content

Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes

Overview of attention for article published in Journal of Translational Medicine, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes
Published in
Journal of Translational Medicine, September 2015
DOI 10.1186/s12967-015-0669-8
Pubmed ID
Authors

Yichun Zhu, Minghuan Zheng, Dongli Song, Ling Ye, Xiangdong Wang

Abstract

Telocytes (TCs) are suggested as a new type of interstitial cells with specific telopodes. Our previous study evidenced that TCs differed from fibroblasts and stem cells at the aspect of gene expression profiles. The present study aims to search the characters and patterns of chromosome X genes of TC-specific or TC-dominated gene profiles and fingerprints, investigate the network of principle genes, and explore potential functional association. We compared gene expression profiles in chromosome X of pulmonary TCs with mesenchymal stem cells (MSC), fibroblasts (Fb), alveolar type II cells (ATII), airway basal cells (ABC), proximal airway cells (PAC), CD8(+) T cells come from bronchial lymph nodes (T-BL), or CD8(+) T cells from lungs (T-L) by global analyses, and selected the genes which were consistently up or down regulated (>1 fold) in TCs compared to other cells as TC-specific genes. The functional and characteristic networks were identified and compared by bioinformatics tools. We selected 31 chromosome X genes as the TC-specific or dominated genes, among which 8 up-regulated (Flna, Msn, Cfp, Col4a5, Mum1l1, Rnf128, Syn1, and Srpx2) and 23 down-regulated (Abcb7, Atf1, Ddx26b, Drp2, Fam122b, Gyk, Irak1, Lamp2, Mecp2, Ndufb11, Ogt, Pdha1, Pola1, Rab9, Rbmx2, Rhox9, Thoc2, Vbp1, Dkc1, Nkrf, Piga, Tmlhe and Tsr2), as compared with other cells. Our data suggested that gene expressions of chromosome X in TCs are different with those in other cells in the lung tissue. According to the selected TC-specific genes, we infer that pulmonary TCs function as modulators which may enhance cellular growth and migration, resist senescence, protect cells from external stress, regulate immune responses, participate in tissue remodeling and repair, regulate neural function, and promote vessel formation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 15%
Researcher 3 15%
Student > Bachelor 2 10%
Professor > Associate Professor 2 10%
Student > Doctoral Student 1 5%
Other 4 20%
Unknown 5 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 20%
Medicine and Dentistry 4 20%
Neuroscience 3 15%
Agricultural and Biological Sciences 2 10%
Engineering 1 5%
Other 0 0%
Unknown 6 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2016.
All research outputs
#14,825,907
of 22,829,083 outputs
Outputs from Journal of Translational Medicine
#1,975
of 3,994 outputs
Outputs of similar age
#151,448
of 274,283 outputs
Outputs of similar age from Journal of Translational Medicine
#55
of 89 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,994 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,283 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 89 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.