↓ Skip to main content

Conserved determinants of lentiviral genome dimerization

Overview of attention for article published in Retrovirology, September 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#34 of 1,107)
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
4 news outlets
twitter
2 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conserved determinants of lentiviral genome dimerization
Published in
Retrovirology, September 2015
DOI 10.1186/s12977-015-0209-x
Pubmed ID
Authors

Thao Tran, Yuanyuan Liu, Jan Marchant, Sarah Monti, Michelle Seu, Jessica Zaki, Ae Lim Yang, Jennifer Bohn, Venkateswaran Ramakrishnan, Rashmi Singh, Mateo Hernandez, Alexander Vega, Michael F. Summers

Abstract

Retroviruses selectively package two copies of their unspliced genomes by what appears to be a dimerization-dependent RNA packaging mechanism. Dimerization of human immunodeficiency virus Type-1 (HIV-1) genomes is initiated by "kissing" interactions between GC-rich palindromic loop residues of a conserved hairpin (DIS), and is indirectly promoted by long-range base pairing between residues overlapping the gag start codon (AUG) and an upstream Unique 5' element (U5). The DIS and U5:AUG structures are phylogenetically conserved among divergent retroviruses, suggesting conserved functions. However, some studies suggest that the DIS of HIV-2 does not participate in dimerization, and that U5:AUG pairing inhibits, rather than promotes, genome dimerization. We prepared RNAs corresponding to native and mutant forms of the 5' leaders of HIV-1 (NL4-3 strain), HIV-2 (ROD strain), and two divergent strains of simian immunodeficiency virus (SIV; cpz-TAN1 and -US strains), and probed for potential roles of the DIS and U5:AUG base pairing on intrinsic and NC-dependent dimerization by mutagenesis, gel electrophoresis, and NMR spectroscopy. Dimeric forms of the native HIV-2 and SIV leaders were only detectable using running buffers that contained Mg(2+), indicating that these dimers are more labile than that of the HIV-1 leader. Mutations designed to promote U5:AUG base pairing promoted dimerization of the HIV-2 and SIV RNAs, whereas mutations that prevented U5:AUG pairing inhibited dimerization. Chimeric HIV-2 and SIV leader RNAs containing the dimer-promoting loop of HIV-1 (DIS) exhibited HIV-1 leader-like dimerization properties, whereas an HIV-1NL4-3 mutant containing the SIVcpzTAN1 DIS loop behaved like the SIVcpzTAN1 leader. The cognate NC proteins exhibited varying abilities to promote dimerization of the retroviral leader RNAs, but none were able to convert labile dimers to non-labile dimers. The finding that U5:AUG formation promotes dimerization of the full-length HIV-1, HIV-2, SIVcpzUS, and SIVcpzTAN1 5' leaders suggests that these retroviruses utilize a common RNA structural switch mechanism to modulate function. Differences in native and NC-dependent dimerization propensity and lability are due to variations in the compositions of the DIS loop residues rather than other sequences within the leader RNAs. Although NC is a well-known RNA chaperone, its role in dimerization has the hallmarks of a classical riboswitch.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Researcher 8 23%
Professor 3 9%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 4 11%
Unknown 7 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 40%
Agricultural and Biological Sciences 7 20%
Chemistry 3 9%
Immunology and Microbiology 2 6%
Medicine and Dentistry 2 6%
Other 1 3%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 34. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 December 2017.
All research outputs
#989,984
of 22,829,083 outputs
Outputs from Retrovirology
#34
of 1,107 outputs
Outputs of similar age
#15,622
of 274,379 outputs
Outputs of similar age from Retrovirology
#2
of 21 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,107 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,379 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.