↓ Skip to main content

Deep convolutional neural network for automatic discrimination between Fragaria × Ananassa flowers and other similar white wild flowers in fields

Overview of attention for article published in Plant Methods, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deep convolutional neural network for automatic discrimination between Fragaria × Ananassa flowers and other similar white wild flowers in fields
Published in
Plant Methods, July 2018
DOI 10.1186/s13007-018-0332-5
Pubmed ID
Authors

Ping Lin, Du Li, Zhiyong Zou, Yongming Chen, Shanchao Jiang

Abstract

The images of different flower species had small inter-class variations across different classes as well as large intra-class variations within a class. Flower classification techniques are mainly based on the features of color, shape and texture, however, the procedure always involves too many heuristics as well as manual labor to tweak parameters, which often leads to datasets with poor qualitative and quantitative measures. The current study proposed a deep architecture of convolutional neural network (CNN) for the purposes of improving the accuracy of identifying the white flowers of Fragaria × ananassa from other three wild flower species of Androsace umbellata (Lour.) Merr., Bidens pilosa L. and Trifolium repens L. in fields. The explored CNN architecture consisted of eightfolds of learnable weights including 5 convolutional layers and 3 fully connected layers, which received a true color 227 × 227 pixels flower image as its input. The developed CNN detector was able to classify the instances of flowers at overall average accuracies of 99.2 and 95.0% in the training and test procedure, respectively. The state-of-the-art CNN model was compared with the classical models of the scale-invariant feature transform (SIFT) features and the pyramid histogram of orientated gradient (PHOG) features combined with the multi-class support vector machine (SVM) algorithm. The proposed model turned out to be much more accurate than the traditional models of SIFT + SVM at overall average accuracies of 82.9 and 55.6% in the training and test procedure and PHOG + SVM at overall average accuracies of 78.3 and 63.1%, respectively. The proposed state-of-the-art CNN method demonstrates that artificial intelligence is capable of precise classification of the white flower images, whose accuracy is comparable to traditional algorithms. The presented algorithm can be further used for the discrimination of white wild flowers in fields.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 16%
Researcher 2 11%
Student > Ph. D. Student 2 11%
Lecturer 1 5%
Student > Bachelor 1 5%
Other 2 11%
Unknown 8 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 16%
Engineering 2 11%
Environmental Science 1 5%
Chemical Engineering 1 5%
Economics, Econometrics and Finance 1 5%
Other 3 16%
Unknown 8 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2018.
All research outputs
#18,645,475
of 23,098,660 outputs
Outputs from Plant Methods
#966
of 1,094 outputs
Outputs of similar age
#254,257
of 330,334 outputs
Outputs of similar age from Plant Methods
#31
of 33 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,094 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 3rd percentile – i.e., 3% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,334 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.