↓ Skip to main content

Enhancing cancer clonality analysis with integrative genomics

Overview of attention for article published in BMC Bioinformatics, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
7 X users
patent
1 patent

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhancing cancer clonality analysis with integrative genomics
Published in
BMC Bioinformatics, December 2015
DOI 10.1186/1471-2105-16-s13-s7
Pubmed ID
Authors

Erich A Peterson, Michael A Bauer, Shweta S Chavan, Cody Ashby, Niels Weinhold, Christoph J Heuck, Gareth J Morgan, Donald J Johann

Abstract

It is understood that cancer is a clonal disease initiated by a single cell, and that metastasis, which is the spread of cancer from the primary site, is also initiated by a single cell. The seemingly natural capability of cancer to adapt dynamically in a Darwinian manner is a primary reason for therapeutic failures. Survival advantages may be induced by cancer therapies and also occur as a result of inherent cell and microenvironmental factors. The selected "more fit" clones outmatch their competition and then become dominant in the tumor via propagation of progeny. This clonal expansion leads to relapse, therapeutic resistance and eventually death. The goal of this study is to develop and demonstrate a more detailed clonality approach by utilizing integrative genomics. Patient tumor samples were profiled by Whole Exome Sequencing (WES) and RNA-seq on an Illumina HiSeq 2500 and methylation profiling was performed on the Illumina Infinium 450K array. STAR and the Haplotype Caller were used for RNA-seq processing. Custom approaches were used for the integration of the multi-omic datasets. Reported are major enhancements to CloneViz, which now provides capabilities enabling a formal tumor multi-dimensional clonality analysis by integrating: i) DNA mutations, ii) RNA expressed mutations, and iii) DNA methylation data. RNA and DNA methylation integration were not previously possible, by CloneViz (previous version) or any other clonality method to date. This new approach, named iCloneViz (integrated CloneViz) employs visualization and quantitative methods, revealing an integrative genomic mutational dissection and traceability (DNA, RNA, epigenetics) thru the different layers of molecular structures. The iCloneViz approach can be used for analysis of clonal evolution and mutational dynamics of multi-omic data sets. Revealing tumor clonal complexity in an integrative and quantitative manner facilitates improved mutational characterization, understanding, and therapeutic assignments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 29%
Student > Ph. D. Student 9 26%
Professor 2 6%
Student > Postgraduate 2 6%
Student > Doctoral Student 1 3%
Other 4 11%
Unknown 7 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 23%
Computer Science 8 23%
Medicine and Dentistry 5 14%
Mathematics 2 6%
Immunology and Microbiology 1 3%
Other 3 9%
Unknown 8 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2020.
All research outputs
#5,545,599
of 22,829,683 outputs
Outputs from BMC Bioinformatics
#1,996
of 7,287 outputs
Outputs of similar age
#85,748
of 387,551 outputs
Outputs of similar age from BMC Bioinformatics
#37
of 145 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 387,551 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.