↓ Skip to main content

Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus
Published in
Biotechnology for Biofuels and Bioproducts, July 2018
DOI 10.1186/s13068-018-1206-9
Pubmed ID
Authors

Pengsong Li, Xiaofen Fu, Shizhong Li, Lei Zhang

Abstract

Low ethanol tolerance of Kluyveromyces marxianus limits its application in high-temperature ethanol fermentation. As a complex phenotype, ethanol tolerance involves synergistic actions of many genes that are widely distributed throughout the genome, thereby being difficult to engineer. TATA-binding protein is the most common target of global transcription machinery engineering for improvement of complex phenotypes. A random mutagenesis library of K. marxianus TATA-binding protein Spt15 was constructed and subjected to screening under ethanol stress. Two mutant strains with improved ethanol tolerance were identified, one of which (denoted as M2) exhibited increased ethanol productivity. The mutant of Spt15 in strain M2 (denoted as Spt15-M2) has a single amino acid substitution at position 31 (Lys → Glu). RNA-Seq-based transcriptomic analysis revealed cellular transcription profile changes resulting from Spt15-M2. Spt15-M2 caused changes in transcriptional level of most of the genes in the central carbon metabolism network. Compared with control strain, 444 differentially expressed genes (DEGs) were identified in strain M2 (fold change > 2, Padj < 0.05), including 48 up-regulated and 396 down-regulated. The up-regulated DEGs are involved in amino acid transport, long-chain fatty acid biosynthesis and MAPK signaling pathway, while the down-regulated DEGs are related to ribosome biogenesis, translation and protein synthesis. Five candidate genes (GAP1, GNP1, FAR1, STE2 and TEC1), which were found to be up-regulated in M2 strain, were overexpressed for a gain-of-function assay. However, the overexpression of no single gene helped improve ethanol tolerance as SPT15-M2 did. This work demonstrates that ethanol tolerance of K. marxianus can be improved by engineering its TATA-binding protein. A single amino acid substitution (K31E) of TATA-binding protein Spt15 is able to bring differential expression of hundreds of genes that acted as an interconnected network for the phenotype of ethanol tolerance. Future perspectives of this technique in K. marxianus were discussed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Researcher 7 18%
Student > Bachelor 3 8%
Student > Master 3 8%
Professor 1 3%
Other 1 3%
Unknown 14 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 33%
Agricultural and Biological Sciences 9 23%
Chemical Engineering 1 3%
Medicine and Dentistry 1 3%
Engineering 1 3%
Other 0 0%
Unknown 14 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2018.
All research outputs
#17,292,294
of 25,385,509 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#996
of 1,578 outputs
Outputs of similar age
#219,943
of 340,712 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#36
of 47 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,712 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.