↓ Skip to main content

Real-time aortic pulse wave velocity measurement during exercise stress testing

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
11 X users
patent
2 patents
facebook
1 Facebook page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Real-time aortic pulse wave velocity measurement during exercise stress testing
Published in
Critical Reviews in Diagnostic Imaging, October 2015
DOI 10.1186/s12968-015-0191-4
Pubmed ID
Authors

Paul A. Roberts, Brett R. Cowan, Yingmin Liu, Aaron C. W. Lin, Poul M. F. Nielsen, Andrew J. Taberner, Ralph A. H. Stewart, Hoi Ieng Lam, Alistair A. Young

Abstract

Pulse wave velocity (PWV), a measure of arterial stiffness, has been demonstrated to be an independent predictor of adverse cardiovascular outcomes. This can be derived non-invasively using cardiovascular magnetic resonance (CMR). Changes in PWV during exercise may reveal further information on vascular pathology. However, most known CMR methods for quantifying PWV are currently unsuitable for exercise stress testing. A velocity-sensitive real-time acquisition and evaluation (RACE) pulse sequence was adapted to provide interleaved acquisition of two locations in the descending aorta (at the level of the pulmonary artery bifurcation and above the renal arteries) at 7.8 ms temporal resolution. An automated method was used to calculate the foot-to-foot transit time of the velocity pulse wave. The RACE method was validated against a standard gated phase contrast (STD) method in flexible tube phantoms using a pulsatile flow pump. The method was applied in 50 healthy volunteers (28 males) aged 22-75 years using a MR-compatible cycle ergometer to achieve moderate work rate (38 ± 22 W, with a 31 ± 12 bpm increase in heart rate) in the supine position. Central pulse pressures were estimated using a MR-compatible brachial device. Scan-rescan reproducibility was evaluated in nine volunteers. Phantom PWV was 22 m/s (STD) vs. 26 ± 5 m/s (RACE) for a butyl rubber tube, and 5.5 vs. 6.1 ± 0.3 m/s for a latex rubber tube. In healthy volunteers PWV increased with age at both rest (R(2) = 0.31 p < 0.001) and exercise (R(2) = 0.40, p < 0.001). PWV was significantly increased at exercise relative to rest (0.71 ± 2.2 m/s, p = 0.04). Scan-rescan reproducibility at rest was -0.21 ± 0.68 m/s (n = 9). This study demonstrates the validity of CMR in the evaluation of PWV during exercise in healthy subjects. The results support the feasibility of using this method in evaluating of patients with systemic aortic disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
New Zealand 1 1%
Unknown 77 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 15%
Student > Ph. D. Student 10 13%
Student > Bachelor 9 11%
Student > Master 9 11%
Student > Doctoral Student 6 8%
Other 12 15%
Unknown 21 27%
Readers by discipline Count As %
Medicine and Dentistry 15 19%
Engineering 13 16%
Nursing and Health Professions 9 11%
Psychology 5 6%
Sports and Recreations 4 5%
Other 10 13%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2024.
All research outputs
#4,133,944
of 25,522,520 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#245
of 1,379 outputs
Outputs of similar age
#51,590
of 289,979 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#4
of 23 outputs
Altmetric has tracked 25,522,520 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,379 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,979 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.