↓ Skip to main content

Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-1945-y
Pubmed ID
Authors

Guoqiang Yi, Manman Shen, Jingwei Yuan, Congjiao Sun, Zhongyi Duan, Liang Qu, Taocun Dou, Meng Ma, Jian Lu, Jun Guo, Sirui Chen, Lujiang Qu, Kehua Wang, Ning Yang

Abstract

As a major economic trait in chickens, egg weight (EW) receives widespread interests in breeding, production and consumption. However, limited information is available for underlying genetic architecture of longitudinal trend in EW. Herein, we measured EWs at nine time points from onset of laying to 60 week of age, and conducted comprehensive genome-wide association studies (GWAS) in 1,534 F2 hens derived from reciprocal crosses between White Leghorn and Dongxiang chickens. Egg weights at all ages except the first egg weight (FEW) exhibited high SNP-based heritability estimates (0.47 ~ 0.60). Strong pair-wise genetic correlations (0.77 ~ 1.00) were found among all EWs. Nine separate univariate genome-wide screens suggested 73 signals showing significant associations with longitudinal EWs. After multivariate and conditional analyses, four variants on three chromosomes remained independent contributions. The minor alleles at two loci exerted consistent and positive substitution effects on EWs, and other two were negative. The four loci together accounted for 3.84 % of the phenotypic variance for FEW and 7.29 ~ 11.06 % for EWs from 32 to 60 week of age. We obtained five candidate genes, of which NCAPG harbors a non-synonymous SNP (rs14491030) causing a valine-to-alanine amino-acid substitution. Genome partitioning analysis indicated a strong linear correlation between the variance explained by each chromosome and its length, which provided evidence that EW follows a highly polygenic nature of inheritance. Identification of significant genetic causes that together implicate EWs at different ages will greatly advance our understanding of the genetic basis behind longitudinal EWs, and would be helpful to illuminate the future breeding direction on how to select desired egg size.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 7 18%
Student > Ph. D. Student 6 15%
Student > Master 4 10%
Researcher 3 8%
Lecturer 2 5%
Other 2 5%
Unknown 16 40%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 40%
Biochemistry, Genetics and Molecular Biology 5 13%
Computer Science 1 3%
Medicine and Dentistry 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 16 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#14,239,245
of 22,829,683 outputs
Outputs from BMC Genomics
#5,703
of 10,655 outputs
Outputs of similar age
#143,766
of 277,499 outputs
Outputs of similar age from BMC Genomics
#210
of 361 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,499 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 361 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.