↓ Skip to main content

Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis

Overview of attention for article published in Respiratory Research, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis
Published in
Respiratory Research, October 2015
DOI 10.1186/s12931-015-0286-3
Pubmed ID
Authors

Jing Geng, Xiaoxi Huang, Ying Li, Xuefeng Xu, Shuhong Li, Dingyuan Jiang, Jiurong Liang, Dianhua Jiang, Chen Wang, Huaping Dai

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by fibroblastic foci and progressive scarring of the pulmonary parenchyma. IPF fibroblasts display increased proliferation and enhanced migration and invasion, analogous to cancer cells. This transformation-like phenotype of fibroblasts plays an important role in the development of pulmonary fibrosis, but the mechanism for this is not well understood. In this study, we compared gene expression profiles in fibrotic lung tissues from IPF patients and normal lung tissues from patients with primary spontaneous pneumothorax using a cDNA microarray to examine the mechanisms involved in the pathogenesis of IPF. In a cDNA microarray, we found that USP13 was decreased in lung tissues from patients with IPF, which was further confirmed by results from immunohistochemistry and western blot assays. Then, we used RNA interference in MRC-5 cells to inhibit USP13 and evaluated its effects by western blot, real-time RT-PCR, bromodeoxyuridine incorporation, and transwell assays. We also used co-immunoprecipitation and immunofluorescence staining to identify the correlation between USP13 and PTEN in IPF. USP13 expression levels were markedly reduced in fibroblastic foci and primary IPF fibroblast lines. The depletion of USP13 resulted in the transformation of fibroblasts into an aggressive phenotype with enhanced proliferative, migratory, and invasive capacities. Additionally, USP13 interacted with PTEN and mediated PTEN ubiquitination and degradation in lung fibroblasts. Down-regulation of USP13 mediates PTEN protein loss and fibroblast phenotypic change, and thereby plays a crucial role in IPF pathogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Bachelor 3 13%
Researcher 3 13%
Student > Master 3 13%
Student > Doctoral Student 2 9%
Other 3 13%
Unknown 5 22%
Readers by discipline Count As %
Medicine and Dentistry 7 30%
Biochemistry, Genetics and Molecular Biology 6 26%
Agricultural and Biological Sciences 3 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Business, Management and Accounting 1 4%
Other 0 0%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2015.
All research outputs
#15,740,505
of 25,374,917 outputs
Outputs from Respiratory Research
#1,762
of 3,062 outputs
Outputs of similar age
#149,643
of 290,716 outputs
Outputs of similar age from Respiratory Research
#32
of 44 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,716 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.