↓ Skip to main content

Requirement for endogenous heat shock factor 1 in inducible nitric oxide synthase induction in murine microglia

Overview of attention for article published in Journal of Neuroinflammation, October 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Requirement for endogenous heat shock factor 1 in inducible nitric oxide synthase induction in murine microglia
Published in
Journal of Neuroinflammation, October 2015
DOI 10.1186/s12974-015-0406-5
Pubmed ID
Authors

Chao Huang, Xu Lu, Lijuan Tong, Jili Wang, Wei Zhang, Bo Jiang, Rongrong Yang

Abstract

Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflammation. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of κB-α (IκB-α)-nuclear factor-κB (NF-κB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signals. Heat shock factor 1 (HSF1), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but it remains obscure whether and how HSF1 affects iNOS induction. Western blot was used to measure the protein expression. The mRNA level was measured by real-time PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-κB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (ChIP) was used to measure the binding activity of NF-κB and STAT1 to iNOS promoters. HSF1 inhibition or knockdown prevented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IκB-α degradation and NF-κB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-κB or STAT1 was also not affected by HSF1 inhibition, but HSF1 inhibition reduced the binding of NF-κB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-κB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Student > Master 2 11%
Student > Ph. D. Student 2 11%
Lecturer 1 6%
Professor 1 6%
Other 1 6%
Unknown 7 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 22%
Medicine and Dentistry 3 17%
Neuroscience 1 6%
Immunology and Microbiology 1 6%
Unknown 9 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2015.
All research outputs
#17,775,656
of 22,830,751 outputs
Outputs from Journal of Neuroinflammation
#1,945
of 2,638 outputs
Outputs of similar age
#188,150
of 279,403 outputs
Outputs of similar age from Journal of Neuroinflammation
#35
of 48 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,638 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,403 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.