↓ Skip to main content

Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions

Overview of attention for article published in BMC Plant Biology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
64 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions
Published in
BMC Plant Biology, October 2015
DOI 10.1186/s12870-015-0643-x
Pubmed ID
Authors

Shamila Weerakoon Abeynayake, Stephen Byrne, Istvan Nagy, Kristina Jonavičienė, Thomas Povl Etzerodt, Birte Boelt, Torben Asp

Abstract

Activation of numerous protective mechanisms during cold acclimation is important for the acquisition of freezing tolerance in perennial ryegrass (Lolium perenne L.). To elucidate the molecular mechanisms of cold acclimation in two genotypes ('Veyo' and 'Falster') of perennial ryegrass from distinct geographical origins, we performed transcriptome profiling during cold acclimation using RNA-Seq. We cold-acclimated plants from both genotypes in controlled conditions for a period of 17 days and isolated Total RNA at various time points for high throughput sequencing using Illumina technology. RNA-seq reads were aligned to genotype specific references to identify transcripts with significant changes in expression during cold acclimation. The genes induced were involved in protective mechanisms such as cell response to abiotic stimulus, signal transduction, redox homeostasis, plasma membrane and cell wall modifications, and carbohydrate metabolism in both genotypes. 'Falster' genotype, adapted to cold climates, showed a stronger transcriptional differentiation during cold acclimation, and more differentially expressed transcripts related to stress, signal transduction, response to abiotic stimulus, and metabolic processes compared to 'Veyo'. 'Falster' genotype also showed an induction of more transcripts with sequence homology to fructosyltransferase genes (FTs) and a higher fold induction of fructan in response to low-temperature stress. The circadian rhythm network was perturbed in the 'Veyo' genotype adapted to warmer climates. In this study, the differentially expressed genes during cold acclimation, potentially involved in numerous protective mechanisms, were identified in two genotypes of perennial ryegrass from distinct geographical origins. The observation that the circadian rhythm network was perturbed in 'Veyo' during cold acclimation may point to a low adaptability of 'Veyo' to low temperature stresses. This study also revealed the transcriptional mechanisms underlying carbon allocation towards fructan biosynthesis in perennial ryegrass.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 25%
Student > Master 9 14%
Student > Ph. D. Student 6 9%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Other 10 16%
Unknown 14 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 48%
Biochemistry, Genetics and Molecular Biology 11 17%
Immunology and Microbiology 2 3%
Business, Management and Accounting 1 2%
Environmental Science 1 2%
Other 3 5%
Unknown 15 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2015.
All research outputs
#14,262,606
of 23,301,510 outputs
Outputs from BMC Plant Biology
#1,086
of 3,314 outputs
Outputs of similar age
#143,546
of 284,995 outputs
Outputs of similar age from BMC Plant Biology
#20
of 61 outputs
Altmetric has tracked 23,301,510 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,314 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,995 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.