↓ Skip to main content

Understanding the molecular aspects of oriental obesity pattern differentiation using DNA microarray

Overview of attention for article published in Journal of Translational Medicine, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Understanding the molecular aspects of oriental obesity pattern differentiation using DNA microarray
Published in
Journal of Translational Medicine, October 2015
DOI 10.1186/s12967-015-0692-9
Pubmed ID
Authors

Sun Woo Hong, Jae-Wook Yoo, Shambhunath Bose, Jung-Hyun Park, Kyungsun Han, Soyoun Kim, Chi-Yeon Lim, Hojun Kim, Dong-ki Lee

Abstract

Human constitution, the fundamental basis of oriental medicine, is categorized into different patterns for a particular disease according to the physical, physiological, and clinical characteristics of the individuals. Obesity, a condition of metabolic disorder, is classified according to six patterns in oriental medicine, as follows: spleen deficiency syndrome, phlegm fluid syndrome, yang deficiency syndrome (YDS), food accumulation syndrome (FAS), liver depression syndrome (LDS), and blood stasis syndrome. In oriental medicine, identification of the disease pattern for individual obese patients is performed on the basis of differentiation in obesity syndrome index and, accordingly, personalized treatment is provided to the patients. The aim of the current study was to understand the obesity patterns in oriental medicine from the genomic point of view via determining the gene expression signature of obese patients using peripheral blood mononuclear cells as the samples. The study was conducted in 23 South Korean obese subjects (19 female and four male) with BMI ≥25 kg/m(2). Identification of oriental obesity pattern was based on the software-guided evaluation of the responses of the subjects to a questionnaire developed by the Korean Institute of Oriental Medicine. The expression profiles of genes were determined using DNA microarray and the level of transcription of genes of interest was further evaluated using quantitative real-time PCR (qRT-PCR). Gene clustering analysis of the microarray data from the FAS, LDS, and YDS subjects exhibited disease pattern-specific upregulation of expression of several genes in a particular cluster. Further analysis of transcription of selected genes using qRT-PCR led to identification of specific genes, including prostaglandin endoperoxide synthase 2, G0/G1 switch 2, carcinoembryonic antigen-related cell adhesion molecule 3, cystein-serine-rich nuclear protein 1, and interleukin 8 receptor, alpha which were highly expressed in LDS obesity constitution. Our current study can be considered as a valuable contribution to the understanding of possible explanation for obesity pattern differentiation in oriental medicine. Further studies can address a novel possibility that the genomic and oriental empirical approaches can be combined and implemented in systematic and synergistic development of personalized medicine. This clinical trial was registered in Clinical Research Information Service of Korea National Institute of Health ( https://cris.nih.go.kr/cris/index.jsp ). KCT0000387.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 17%
Student > Master 10 15%
Student > Bachelor 10 15%
Student > Ph. D. Student 6 9%
Professor 2 3%
Other 8 12%
Unknown 19 29%
Readers by discipline Count As %
Medicine and Dentistry 11 17%
Biochemistry, Genetics and Molecular Biology 3 5%
Neuroscience 3 5%
Sports and Recreations 3 5%
Agricultural and Biological Sciences 3 5%
Other 18 27%
Unknown 25 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2015.
All research outputs
#15,348,897
of 22,830,751 outputs
Outputs from Journal of Translational Medicine
#2,236
of 3,994 outputs
Outputs of similar age
#166,164
of 283,771 outputs
Outputs of similar age from Journal of Translational Medicine
#59
of 86 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,994 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,771 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 86 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.