↓ Skip to main content

STatistically Assigned Response Criteria in Solid Tumors (STARCIST)

Overview of attention for article published in Cancer Imaging, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
Published in
Cancer Imaging, July 2015
DOI 10.1186/s40644-015-0042-4
Pubmed ID
Authors

Thomas Bengtsson, Sandra M. Sanabria-Bohorquez, Timothy J. McCarthy, David S. Binns, Rodney J. Hicks, Alex J. de Crespigny

Abstract

Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1-3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2-3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects. To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a 'test-retest' data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time. In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds. Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 24%
Student > Ph. D. Student 6 18%
Student > Master 5 15%
Researcher 3 9%
Other 3 9%
Other 4 12%
Unknown 4 12%
Readers by discipline Count As %
Medicine and Dentistry 13 39%
Sports and Recreations 4 12%
Nursing and Health Professions 2 6%
Computer Science 2 6%
Psychology 1 3%
Other 3 9%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2015.
All research outputs
#20,656,161
of 25,373,627 outputs
Outputs from Cancer Imaging
#445
of 674 outputs
Outputs of similar age
#201,260
of 275,152 outputs
Outputs of similar age from Cancer Imaging
#4
of 7 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 674 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,152 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.