↓ Skip to main content

High genetic diversity in hard ticks from a China-Myanmar border county

Overview of attention for article published in Parasites & Vectors, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High genetic diversity in hard ticks from a China-Myanmar border county
Published in
Parasites & Vectors, August 2018
DOI 10.1186/s13071-018-3048-5
Pubmed ID
Authors

Lan-Hua Li, Yi Zhang, Jia-Zhi Wang, Xi-Shang Li, Shou-Qin Yin, Dan Zhu, Jing-Bo Xue, Sheng-Guo Li

Abstract

Many tick species have great morphological similarity and are thus grouped into species complexes. Molecular methods are therefore useful in the classification and identification of ticks. However, little is known about the genetic diversity of hard ticks in China, especially at the subspecies level. Tengchong is one of the epidemic foci of tick-borne diseases in China, but the tick species inhabiting the local area are still unknown. Eighteen villages in Tengchong County, China, were selected for sampling carried out from September to October 2014. Infesting hard ticks were removed from the body surface of domestic animals and questing ticks were collected from grazing fields. After morphological identification, molecular characteristics of each tick species were analyzed based on both 16S rRNA and cytochrome c oxidase subunit 1 (cox1) gene fragments. Six tick species were identified based on morphology: Rhipicephalus microplus, R. haemaphysaloides, Ixodes ovatus, Haemaphysalis longicornis, H. shimoga and H. kitaokai. Phylogenetic analysis using the cox1 gene revealed that R. microplus ticks from the present study belong to clade C. For tick samples of both R. haemaphysaloides and I. ovatus, three phylogenetic groups were recognized, and the intergroup genetic distances exceeded the usual tick species boundaries. Haemaphysalis longicornis ticks were clustered into two separate clades based on the cox1 gene. For ticks from both H. shimoga and H. kitaokai, two phylogenetic groups were recognized based on the phylogenetic analysis of the 16S rRNA gene, and the intergroup genetic distances also exceeded the known boundaries for closely related tick species. According to molecular analyses, new species or subspecies closely related to R. haemaphysaloides, I. ovatus, H. shimoga and H. kitaokai probably exist in the China-Myanmar border Tengchong County, or these ticks form species complexes with highly divergent mitochondrial lineages. Morphological comparisons are warranted to further confirm the taxonomic status of these tick species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 21%
Student > Ph. D. Student 5 12%
Student > Master 4 10%
Student > Doctoral Student 3 7%
Student > Postgraduate 3 7%
Other 6 14%
Unknown 12 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 24%
Veterinary Science and Veterinary Medicine 9 21%
Biochemistry, Genetics and Molecular Biology 5 12%
Environmental Science 1 2%
Philosophy 1 2%
Other 3 7%
Unknown 13 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2018.
All research outputs
#17,987,106
of 23,100,534 outputs
Outputs from Parasites & Vectors
#3,859
of 5,522 outputs
Outputs of similar age
#238,092
of 331,095 outputs
Outputs of similar age from Parasites & Vectors
#92
of 140 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,522 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 140 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.