↓ Skip to main content

Molecular and functional evolution of the fungal diterpene synthase genes

Overview of attention for article published in BMC Microbiology, October 2015
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular and functional evolution of the fungal diterpene synthase genes
Published in
BMC Microbiology, October 2015
DOI 10.1186/s12866-015-0564-8
Pubmed ID
Authors

Marc JC Fischer, Camille Rustenhloz, Véronique Leh-Louis, Guy Perrière

Abstract

Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes. The recent availability of a large number of fungal genomes represents an opportunity to investigate how genes involved in diterpene synthesis were acquired by fungi, and to assess the consequences of this process on the fungal metabolism. In order to investigate the origin of fungal di-TPS, we implemented a search for potential fungal di-TPS genes and identified their presence in several unrelated Ascomycota and Basidiomycota species. The fungal di-TPS phylogenetic tree is function-related but is not associated with the phylogeny based on housekeeping genes. The lack of agreement between fungal and di-TPS-based phylogenies suggests the presence of Horizontal Gene Transfer (HGTs) events. Further evidence for HGT was provided by conservation of synteny of di-TPS and neighbouring genes in distantly related fungi. The results obtained here suggest that fungal di-TPSs originated from an ancient HGT event of a single di-TPS gene from a plant to a fungus in Ascomycota. In fungi, these di-TPSs allowed for the formation of clusters consisting in di-TPS, GGPPS and P450 genes to create functional clusters that were transferred between fungal species, producing diterpenes acting as hormones or toxins, thus affecting fungal development and pathogenicity.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 44%
Researcher 7 16%
Professor > Associate Professor 3 7%
Student > Master 3 7%
Student > Postgraduate 3 7%
Other 7 16%
Unknown 1 2%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 42%
Biochemistry, Genetics and Molecular Biology 15 35%
Chemistry 3 7%
Environmental Science 2 5%
Social Sciences 1 2%
Other 2 5%
Unknown 2 5%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2015.
All research outputs
#10,994,894
of 12,372,633 outputs
Outputs from BMC Microbiology
#1,467
of 1,804 outputs
Outputs of similar age
#220,644
of 267,998 outputs
Outputs of similar age from BMC Microbiology
#133
of 165 outputs
Altmetric has tracked 12,372,633 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,804 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,998 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.