↓ Skip to main content

Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress

Overview of attention for article published in BMC Nephrology, October 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress
Published in
BMC Nephrology, October 2015
DOI 10.1186/s12882-015-0157-7
Pubmed ID
Authors

Yanhong Wang, Jihua Tian, Xi Qiao, Xiaole Su, Yang Mi, Ruijing Zhang, Rongshan Li

Abstract

Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. Endoplasmic reticulum stress (ERS) has been implicated in the pathology of renal ischemia/reperfusion (IRI). In the present study, we investigated whether IMD could reduce ERS damage after renal ischemia. The kidneys of SD rats were subjected to 45 min of warm ischemia followed by 24 h of reperfusion. The hypoxia/reoxygenation(H/R) model in NRK-52E cells consisted of hypoxia for 1 h and reoxygenation for 2 h. IMD was over-expressed in vivo and in vitro using the vector pcDNA3.1-IMD. The serum creatinine concentration and lactate dehydrogenase (LDH) activity in the plasma were determined. Histologic examinations of renal tissues were performed with PAS staining. Real-time PCR and Western blotting were used to determine the mRNA and protein levels, respectively. Additionally, ER staining was used to detect the ERS response. In the rat renal IRI model, we found that IMD gene transfer markedly improved renal function and pathology and decreased LDH activity and cell apoptosis compared with the kidneys that were transfected with the control plasmid. IMD significantly attenuated the ERS stress parameters compared with IRI group. Indeed, IMD down-regulated glucose-regulated protein 78 (GRP78), C/EBP homologous protein(CHOP), and caspase 12 protein and mRNA levels. Moreover, in the NRK-52E cell H/R model, IMD overexpression prevented the apoptosis induced by H/R. Furthermore, IMD ameliorated the ER structural changes and concomitantly decreased the levels of GRP78, CHOP and caspase-12. This study revealed that IMD protects against renal IRI by suppressing ERS and ERS-related apoptosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 14%
Student > Ph. D. Student 3 14%
Student > Master 2 10%
Student > Postgraduate 2 10%
Researcher 2 10%
Other 3 14%
Unknown 6 29%
Readers by discipline Count As %
Medicine and Dentistry 6 29%
Agricultural and Biological Sciences 4 19%
Biochemistry, Genetics and Molecular Biology 2 10%
Computer Science 1 5%
Sports and Recreations 1 5%
Other 1 5%
Unknown 6 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2015.
All research outputs
#20,295,099
of 22,831,537 outputs
Outputs from BMC Nephrology
#2,182
of 2,470 outputs
Outputs of similar age
#237,866
of 283,600 outputs
Outputs of similar age from BMC Nephrology
#31
of 33 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,470 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.