↓ Skip to main content

Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain

Overview of attention for article published in Molecular Medicine, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain
Published in
Molecular Medicine, May 2018
DOI 10.1186/s10020-018-0021-x
Pubmed ID
Authors

Hannah Aucott, Agnieszka Sowinska, Helena Erlandsson Harris, Peter Lundback

Abstract

High mobility group box 1 (HMGB1) protein is a central endogenous inflammatory mediator contributing to the pathogenesis of several inflammatory disorders. HMGB1 interacts with toll-like receptors (TLRs) but contradictory evidence regarding its identity as a TLR2 ligand persists. The aim of this study was to investigate if highly purified HMGB1 interacts with TLR2 and if so, to determine the functional outcome. Full length or C-terminal truncated (Δ30) HMGB1 was purified from E.coli. Binding to TLR2-Fc was investigated by direct-ELISA. For the functional studies, proteins alone or in complex with peptidoglycan (PGN) were added to human embryonic kidney (HEK) cells transfected with functional TLR2, TLR 1/2 or TLR 2/6 dimers, macrophages, whole blood or peripheral blood mononuclear cells (PBMCs). Cytokine levels were determined by ELISA. In vitro binding experiments revealed that Δ30 HMGB1, lacking the acidic tail domain, but not full length HMGB1 binds dose dependently to TLR2. Control experiments confirmed that the interaction was specific to TLR2 and could be inhibited by enzymatic digestion. Δ30 HMGB1 alone was unable to induce cytokine production via TLR2. However, full length HMGB1 and Δ30 HMGB1 formed complexes with PGN, a known TLR2 ligand, and synergistically potentiated the inflammatory response in PBMCs. We have demonstrated that TLR2 is a receptor for HMGB1 and this binding is negatively regulated by the C-terminal tail. HMGB1 did not induce functional activation of TLR2 while both full length HMGB1 and Δ30 HMGB1 potentiated the inflammatory activities of the TLR2 ligand PGN. We hypothesize that Δ30 HMGB1 generated in vivo by enzymatic cleavage could act as an enhancer of TLR2-mediated inflammatory activities.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 16%
Researcher 5 16%
Student > Bachelor 4 13%
Professor > Associate Professor 3 10%
Student > Doctoral Student 2 6%
Other 7 23%
Unknown 5 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 35%
Medicine and Dentistry 9 29%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Agricultural and Biological Sciences 2 6%
Immunology and Microbiology 1 3%
Other 1 3%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2018.
All research outputs
#20,530,891
of 23,100,534 outputs
Outputs from Molecular Medicine
#1,017
of 1,155 outputs
Outputs of similar age
#287,704
of 326,755 outputs
Outputs of similar age from Molecular Medicine
#13
of 17 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,155 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,755 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.