↓ Skip to main content

Paroxysmal Extreme Pain Disorder M1627K Mutation in Human Nav1.7 Renders DRG Neurons Hyperexcitable

Overview of attention for article published in Molecular Pain, January 2008
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
117 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Paroxysmal Extreme Pain Disorder M1627K Mutation in Human Nav1.7 Renders DRG Neurons Hyperexcitable
Published in
Molecular Pain, January 2008
DOI 10.1186/1744-8069-4-37
Pubmed ID
Authors

Sulayman D Dib-Hajj, Mark Estacion, Brian W Jarecki, Lynda Tyrrell, Tanya Z Fischer, Mark Lawden, Theodore R Cummins, Stephen G Waxman

Abstract

Paroxysmal extreme pain disorder (PEPD) is an autosomal dominant painful neuropathy with many, but not all, cases linked to gain-of-function mutations in SCN9A which encodes voltage-gated sodium channel Nav1.7. Severe pain episodes and skin flushing start in infancy and are induced by perianal probing or bowl movement, and pain progresses to ocular and mandibular areas with age. Carbamazepine has been effective in relieving symptoms, while other drugs including other anti-epileptics are less effective. Sequencing of SCN9A coding exons from an English patient, diagnosed with PEPD, has identified a methionine 1627 to lysine (M1627K) substitution in the linker joining segments S4 and S5 in domain IV. We confirm that M1627K depolarizes the voltage-dependence of fast-inactivation without substantially altering activation or slow-inactivation, and inactivates from the open state with slower kinetics. We show here that M1627K does not alter development of closed-state inactivation, and that M1627K channels recover from fast-inactivation faster than wild type channels, and produce larger currents in response to a slow ramp stimulus. Using current-clamp recordings, we also show that the M1627K mutant channel reduces the threshold for single action potentials in DRG neurons and increases the number of action potentials in response to graded stimuli. M1627K mutation was previously identified in a sporadic case of PEPD from France, and we now report it in an English family. We confirm the initial characterization of mutant M1627K effect on fast-inactivation of Nav1.7 and extend the analysis to other gating properties of the channel. We also show that M1627K mutant channels render DRG neurons hyperexcitable. Our new data provide a link between altered channel biophysics and pain in PEPD patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
United States 1 1%
Australia 1 1%
Unknown 81 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 20%
Student > Bachelor 14 16%
Researcher 13 15%
Student > Master 13 15%
Student > Doctoral Student 4 5%
Other 11 13%
Unknown 13 15%
Readers by discipline Count As %
Medicine and Dentistry 23 27%
Agricultural and Biological Sciences 18 21%
Neuroscience 12 14%
Pharmacology, Toxicology and Pharmaceutical Science 8 9%
Biochemistry, Genetics and Molecular Biology 5 6%
Other 4 5%
Unknown 15 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2019.
All research outputs
#16,720,137
of 25,371,288 outputs
Outputs from Molecular Pain
#331
of 669 outputs
Outputs of similar age
#142,731
of 168,384 outputs
Outputs of similar age from Molecular Pain
#18
of 24 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 669 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 168,384 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.