↓ Skip to main content

Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine

Overview of attention for article published in Stem Cell Research & Therapy, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
7 X users
patent
2 patents

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine
Published in
Stem Cell Research & Therapy, October 2015
DOI 10.1186/s13287-015-0200-4
Pubmed ID
Authors

Yu Cao, Jimin Xiong, Shenghui Mei, Fu Wang, Zhigang Zhao, Songlin Wang, Yi Liu

Abstract

Stem cells have great therapeutic potential due to their capacity for self-renewal and their potential for differentiating into multiple cell lineages. It has been recently shown that the host immune system has fundamental effects on the fate of transplanted mesenchymal stem cells during bone repair, where the topical administration of aspirin is capable of improving calvarial bone repair in rodents by inhibiting tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production. This study investigates whether aspirin is capable of accelerating the regenerative potential of bone marrow mesenchymal stem cells (BMSC) in a mini swine calvarial bone defect model. Calvarial bone defects (3 cm × 1.8 cm oval defect) in mini swine were treated with BMSC pretreated with 75 μg/ml aspirin for 24 h seeded onto hydroxyaptite/tricalcium phosphatel (HA/TCP), or with BMSC with HA/TCP, or with HA/TCP only, or remained untreated. Animals were scanned with micro-computed tomography (microCT) at 2 days and 6 months postsurgery and were sacrificed at 6 months postsurgery with decalcified tissues being processed for histomorphometric examination. The cytokine levels, including TNF-α and IFN-γ, were measured by enzyme-linked immunosorbent assay (ELISA). Aspirin at 75 μg/ml promoted the osteogenesis of BMSC in vitro and in vivo, shown by Alizarin Red staining and new bone volume in the nude mice transplantation model (p < 0.01), respectively. Defects treated with aspirin-BMSC showed significantly greater new bone fill compared with other three groups at 6 months postsurgery (p < 0.01). Aspirin-BMSC treatment has significantly decreased the concentration of TNF-α and IFN-γ (p < 0.05). The present study shows that BMSC pretreated with aspirin have a greater capacity to repair calvarial bone defects in a mini swine model. The results suggest that the administration of aspirin is capable of improving BMSC-mediated calvarial bone regeneration in a big animal model.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 15%
Student > Master 8 15%
Researcher 5 10%
Student > Doctoral Student 3 6%
Student > Bachelor 2 4%
Other 8 15%
Unknown 18 35%
Readers by discipline Count As %
Medicine and Dentistry 14 27%
Biochemistry, Genetics and Molecular Biology 5 10%
Engineering 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Computer Science 1 2%
Other 4 8%
Unknown 22 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2023.
All research outputs
#3,652,021
of 24,682,395 outputs
Outputs from Stem Cell Research & Therapy
#346
of 2,654 outputs
Outputs of similar age
#50,346
of 290,133 outputs
Outputs of similar age from Stem Cell Research & Therapy
#11
of 61 outputs
Altmetric has tracked 24,682,395 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,654 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,133 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.