↓ Skip to main content

VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation

Overview of attention for article published in Molecular Brain, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
80 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation
Published in
Molecular Brain, October 2015
DOI 10.1186/s13041-015-0156-4
Pubmed ID
Authors

Yun Tian, Fu-Lei Tang, XiangDong Sun, Lei Wen, Lin Mei, Bei-Sha Tang, Wen-Cheng Xiong

Abstract

Vacuolar protein sorting 35 (VPS35), a key component of retromer, plays an important role in endosome-to-Golgi retrieval of membrane proteins. Dysfunction of VPS35/retromer is a risk factor for neurodegenerative disorders, including AD (Alzheimer's disease) and PD (Parkinson's disease). However, exactly how VPS35-deficiency contributes to AD or PD pathogenesis remains poorly understood. We found that VPS35-deficiency impaired dendritic spine maturation and decreased glutamatergic transmission. AMPA receptors, GluA1 and GluA2, are significantly reduced in purified synaptosomal and PSD fractions from VPS35-deficient brain. The surface levels of AMPA receptors are also decreased in VPS35-deficient neurons. Additionally, VPS35 interacted with AMPA-type receptors, GluA1 and GluA2. Overexpression of GluA2, but not GluA1, could partially restore the spine maturation deficit in VPS35-deficient neurons. These results provide evidence for VPS35's function in promoting spine maturation, which is likely through increasing AMPA receptor targeting to the postsynaptic membrane. Perturbation of such a VPS35/retromer function may contribute to the impaired glutamatergic transmission and pathogenesis of neurodegenerative disorders, such as AD and PD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 26%
Student > Bachelor 16 20%
Researcher 6 8%
Student > Master 5 6%
Other 4 5%
Other 9 11%
Unknown 19 24%
Readers by discipline Count As %
Neuroscience 23 29%
Biochemistry, Genetics and Molecular Biology 16 20%
Agricultural and Biological Sciences 8 10%
Medicine and Dentistry 7 9%
Immunology and Microbiology 1 1%
Other 2 3%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2015.
All research outputs
#3,342,762
of 25,373,627 outputs
Outputs from Molecular Brain
#162
of 1,198 outputs
Outputs of similar age
#45,059
of 294,977 outputs
Outputs of similar age from Molecular Brain
#8
of 33 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,198 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,977 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.