↓ Skip to main content

Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons

Overview of attention for article published in Neural Development, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons
Published in
Neural Development, October 2015
DOI 10.1186/s13064-015-0053-7
Pubmed ID
Authors

James M. Clegg, Ziwen Li, Michael Molinek, Isabel Martín Caballero, Martine N. Manuel, David J. Price

Abstract

In mouse embryos, the Pax6 transcription factor is expressed in the progenitors of thalamic neurons but not in thalamic neurons themselves. Its null-mutation causes early mis-patterning of thalamic progenitors. It is known that thalamic neurons generated by Pax6 (-/-) progenitors do not develop their normal connections with the cortex, but it is not clear why. We investigated the extent to which defects intrinsic to the thalamus are responsible. We first confirmed that, in constitutive Pax6 (-/-) mutants, the axons of thalamic neurons fail to enter the telencephalon and, instead, many of them take an abnormal path to the hypothalamus, whose expression of Slits would normally repel them. We found that thalamic neurons show reduced expression of the Slit receptor Robo2 in Pax6 (-/-) mutants, which might enhance the ability of their axons to enter the hypothalamus. Remarkably, however, in chimeras comprising a mixture of Pax6 (-/-) and Pax6 (+/+) cells, Pax6 (-/-) thalamic neurons are able to generate axons that exit the diencephalon, take normal trajectories through the telencephalon and avoid the hypothalamus. This occurs despite abnormalities in their molecular patterning (they express Nkx2.2, unlike normal thalamic neurons) and their reduced expression of Robo2. In conditional mutants, acute deletion of Pax6 from the forebrain at the time when thalamic axons are starting to grow does not prevent the development of the thalamocortical tract, suggesting that earlier extra-thalamic patterning and /or morphological defects are the main cause of thalamocortical tract failure in Pax6 (-/-) constitutive mutants. Our results indicate that Pax6 is required by thalamic progenitors for the normal molecular patterning of the thalamic neurons that they generate but thalamic neurons do not need normal Pax6-dependent patterning to become competent to grow axons that can be guided appropriately.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 28%
Researcher 8 22%
Student > Ph. D. Student 7 19%
Student > Bachelor 2 6%
Other 2 6%
Other 4 11%
Unknown 3 8%
Readers by discipline Count As %
Neuroscience 13 36%
Agricultural and Biological Sciences 9 25%
Biochemistry, Genetics and Molecular Biology 8 22%
Unspecified 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 0 0%
Unknown 4 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2015.
All research outputs
#15,349,419
of 22,831,537 outputs
Outputs from Neural Development
#135
of 226 outputs
Outputs of similar age
#166,488
of 284,235 outputs
Outputs of similar age from Neural Development
#4
of 5 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 226 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,235 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one.