↓ Skip to main content

On predicting regulatory genes by analysis of functional networks in C. elegans

Overview of attention for article published in BioData Mining, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On predicting regulatory genes by analysis of functional networks in C. elegans
Published in
BioData Mining, November 2015
DOI 10.1186/s13040-015-0066-0
Pubmed ID
Authors

Olga V. Valba, Sergei K. Nechaev, Mark G. Sterken, L. Basten Snoek, Jan E. Kammenga, Olga O. Vasieva

Abstract

Connectivity networks, which reflect multiple interactions between genes and proteins, possess not only a descriptive but also a predictive value, as new connections can be extrapolated and tested by means of computational analysis. Integration of different types of connectivity data (such as co-expression and genetic interactions) in one network has proven to benefit 'guilt by association' analysis. However predictive values of connectives of different types, that had their specific functional meaning and topological characteristics were not obvious, and have been addressed in this analysis. eQTL data for 3 experimental C.elegans age groups were retrieved from WormQTL. WormNet has been used to obtain pair-wise gene interactions. The Shortest Path Function (SPF) has been adopted for statistical validation of the co-expressed gene clusters and for computational prediction of their potential gene expression regulators from a network context. A new SPF-based algorithm has been applied to genetic interactions sub-networks adjacent to the clusters of co-expressed genes for ranking the most likely gene expression regulators causal to eQTLs. We have demonstrated that known co-expression and genetic interactions between C. elegans genes can be complementary in predicting gene expression regulators. Several algorithms were compared in respect to their predictive potential in different network connectivity contexts. We found that genes associated with eQTLs are highly clustered in a C. elegans co-expression sub-network, and their adjacent genetic interactions provide the optimal functional connectivity environment for application of the new SPF-based algorithm. It was successfully tested in the reverse-prediction analysis on groups of genes with known regulators and applied to co-expressed genes and experimentally observed expression quantitative trait loci (eQTLs). This analysis demonstrates differences in topology and connectivity of co-expression and genetic interactions sub-networks in WormNet. The modularity of less continuous genetic interaction network does not correspond to modularity of the dense network comprised by gene co-expression interactions. However the genetic interaction network can be used much more efficiently with the SPF method in prediction of potential regulators of gene expression. The developed method can be used for validation of functional significance of suggested eQTLs and a discovery of new regulatory modules.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 27%
Researcher 8 27%
Student > Master 4 13%
Student > Bachelor 3 10%
Student > Doctoral Student 1 3%
Other 2 7%
Unknown 4 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 47%
Agricultural and Biological Sciences 6 20%
Computer Science 3 10%
Arts and Humanities 1 3%
Physics and Astronomy 1 3%
Other 1 3%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2015.
All research outputs
#16,173,005
of 24,598,501 outputs
Outputs from BioData Mining
#225
of 320 outputs
Outputs of similar age
#163,569
of 290,778 outputs
Outputs of similar age from BioData Mining
#10
of 13 outputs
Altmetric has tracked 24,598,501 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 320 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.5. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,778 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.