↓ Skip to main content

A search for genetic diversity among Italian Greyhounds from Continental Europe and the USA and the effect of inbreeding on susceptibility to autoimmune disease

Overview of attention for article published in Canine Medicine and Genetics, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
3 Facebook pages

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A search for genetic diversity among Italian Greyhounds from Continental Europe and the USA and the effect of inbreeding on susceptibility to autoimmune disease
Published in
Canine Medicine and Genetics, October 2015
DOI 10.1186/s40575-015-0030-9
Pubmed ID
Authors

Niels C. Pedersen, Hongwei Liu, Angela Leonard, Layle Griffioen

Abstract

Previous studies documented the problem of inbreeding among Italian Greyhounds (IG) from the USA and its possible role in a multiple autoimmune disease syndrome. The present study is an extension of these earlier experiments and had two objectives: 1) to identify pockets of additional genetic diversity that might still exist among IG from the USA and Continental Europe, and 2) to determine how loss of genetic diversity within the genome and in the dog leukocyte antigen (DLA) complex relates to the problem of autoimmune disease in IG from the USA. Genetic testing was conducted using 33 short tandem repeat (STR) loci across 25 chromosomes and 7 STR loci that associated with specific dog leukocyte antigen (DLA) class I and II haplotypes. Standard genetic assessment tests based on allele frequencies and internal relatedness (IR) were used as measures of breed-wide and individual heterozygosity. The results of these tests demonstrated that IG from the USA and Continental Europe belonged to a single breed but were genetically distinguishable by genomic allele frequencies, DLA class I and II haplotypes, and principal coordinate analysis (PCoA). In the second part of the study, 85 IG from the USA that had suffered various autoimmune disorders (case) and 104 healthy dogs (control) of comparable age were studied for genetic associations with disease. Case dogs were found to be significantly more homozygous in the DLA regions than control dogs. Principal coordinate analysis did not differentiate case from control populations. No specific STR-associated DLA-class I or II haplotype was associated with increased autoimmune disease risks. Reasons for the loss of genetic diversity and increased homozygosity among IG from the USA were studied using registration data and deep pedigrees. The breed in the USA started from a small number of founders from Europe and has remained relatively isolated and small in numbers, limiting breeding choices especially in the period before modern transportation and artificial insemination. An additional cause of lost diversity and increased homozygosity has been the influence of famous sires and their show-winning progeny. The most influential of these sires was Ch. Dasa's King of the Mountain (King) born in 1978. Virtually all contemporary IG from the USA have King at least once in 10 generation pedigrees and 18 % of the genome of contemporary IG from the USA is shared with King. It was concluded that artificial genetic bottlenecks have concentrated numerous genetic polymorphisms responsible for autoimmune disease and that these risk factors did not originate in a specific individual or bloodline of the breed. Rather, they were of ancestral origin in both purebred and random bred dogs and inherited by descent. Italian Greyhound breeders in the USA have several options to improve breed health: 1) breed against homozygosity within the genome and in the DLA region, 2) avoid breeding dogs that have suffered an autoimmune disorder, 3) increase diversity by incorporating the genetic differences that exist in IG from Continental Europe, or 4) outcross to other small sighthound breeds. The latter two approaches must be undertaken with care to avoid introduction of new deleterious traits and to maximize retention and dissemination of new genetic diversity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Other 7 24%
Researcher 6 21%
Student > Doctoral Student 2 7%
Student > Bachelor 2 7%
Professor 2 7%
Other 3 10%
Unknown 7 24%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 10 34%
Agricultural and Biological Sciences 4 14%
Biochemistry, Genetics and Molecular Biology 3 10%
Medicine and Dentistry 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2015.
All research outputs
#15,517,992
of 25,374,647 outputs
Outputs from Canine Medicine and Genetics
#96
of 128 outputs
Outputs of similar age
#149,540
of 295,360 outputs
Outputs of similar age from Canine Medicine and Genetics
#3
of 4 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 128 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 93.9. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,360 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.