↓ Skip to main content

The predicted σ54-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in “Aromatoleum aromaticum” EbN1

Overview of attention for article published in BMC Microbiology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The predicted σ54-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in “Aromatoleum aromaticum” EbN1
Published in
BMC Microbiology, November 2015
DOI 10.1186/s12866-015-0571-9
Pubmed ID
Authors

Imke Büsing, Mirjam Kant, Marvin Dörries, Lars Wöhlbrand, Ralf Rabus

Abstract

The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 anaerobically utilizes a multitude of aromatic compounds via specific peripheral degradation routes. Compound-specific formation of these catabolic modules is assumed to be mediated by specific transcriptional activators. In case of the recently elucidated p-ethylphenol/p-hydroxyacetophenone pathway, the highly substrate-specific regulation was implicated to involve the predicted σ(54)-dependent, NtrC-type regulator EbA324. The latter was suggested to control the expression of the two neighboring gene clusters encoding the catabolic enzymes as well as a corresponding putative solvent efflux system. In the present study, a molecular genetic approach was used to study the predicted function of EbA324. An unmarked in frame ΔebA324 (here renamed as ΔetpR; p-ethylphenol regulator) deletion mutation was generated. The ΔetpR mutant was unable to grow anaerobically with either p-ethylphenol or p-hydroxyacetophenone. Growth similar to the wild type was restored in the ΔetpR mutant background by in trans expression of plasmid-born etpR. Furthermore, expression of the "p-ethylphenol" gene clusters as well as corresponding protein formation was shown to depend on the presence of both, EtpR and either p-ethylphenol or p-hydroxyacetophenone. In the wild type, the etpR gene appears to be constitutively expressed and its expression level not to be modulated upon effector presence. Comparison with the regulatory domains of known phenol- and alkylbenzene-responsive NtrC-type regulators of Pseudomonas spp. and Thauera aromatica allowed identifying >60 amino acid residues in the regulatory domain (in particular positions 149 to 192 of EtpR) that may contribute to the effector specificity viz. presumptively restricted effector spectrum of EtpR. This study provides experimental evidence for the genome predicted σ(54)-dependent regulator EtpR (formerly EbA324) of "A. aromaticum" EbN1 to be responsive to p-ethylphenol, as well as its degradation intermediate p-hydroxyacetophenone, and to control the expression of genes involved in the anaerobic degradation of these two aromatic growth substrates. Overall, the presented results advance our understanding on the regulation of anaerobic aromatic compound catabolism, foremost based on the sensory discrimination of structurally similar substrates.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 7%
Unknown 13 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Master 3 21%
Student > Doctoral Student 2 14%
Student > Postgraduate 2 14%
Professor 1 7%
Other 2 14%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 43%
Agricultural and Biological Sciences 5 36%
Environmental Science 1 7%
Immunology and Microbiology 1 7%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2015.
All research outputs
#14,828,066
of 22,832,057 outputs
Outputs from BMC Microbiology
#1,601
of 3,191 outputs
Outputs of similar age
#157,649
of 285,068 outputs
Outputs of similar age from BMC Microbiology
#28
of 71 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,191 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,068 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.