↓ Skip to main content

Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression

Overview of attention for article published in Molecular Cancer, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression
Published in
Molecular Cancer, November 2015
DOI 10.1186/s12943-015-0457-3
Pubmed ID
Authors

Panagiotis Maragozidis, Eirini Papanastasi, Diana Scutelnic, Athina Totomi, Ioanna Kokkori, Sotirios G. Zarogiannis, Theodora Kerenidi, Konstantinos I. Gourgoulianis, Nikolaos A. A. Balatsos

Abstract

Lung cancer is the leading cause of cancer mortality worldwide, mainly due to late diagnosis, poor prognosis and tumor heterogeneity. Thus, the need for biomarkers that will aid classification, treatment and monitoring remains intense and challenging and depends on the better understanding of the tumor pathobiology and underlying mechanisms. The deregulation of gene expression is a hallmark of cancer and a critical parameter is the stability of mRNAs that may lead to increased oncogene and/or decreased tumor suppressor transcript and protein levels. The shortening of mRNA poly(A) tails determines mRNA stability, as it is usually the first step in mRNA degradation, and is catalyzed by deadenylases. Herein, we assess the clinical significance of deadenylases and we study their role on gene expression in squamous cell lung carcinoma (SCC). Computational transcriptomic analysis from a publicly available microarray was performed in order to examine the expression of deadenylases in SCC patient samples. Subsequently we employed real-time PCR in clinical samples in order to validate the bioinformatics results regarding the gene expression of deadenylases. Selected deadenylases were silenced in NCI-H520 and Hep2 human cancer cell lines and the effect on gene expression was analyzed with cDNA microarrays. The in silico analysis revealed that the expression of several deadenylases is altered in SCC. Quantitative real-time PCR showed that four deadenylases, PARN, CNOT6, CNOT7 and NOC, are differentially expressed in our SCC clinical samples. PARN overexpression correlated with younger patient age and CNOT6 overexpression with non-metastatic tumors. Kaplan-Meier analysis suggests that increased levels of PARN and NOC correlate with significantly increased survival. Gene expression analysis upon PARN and NOC silencing in lung cancer cells revealed gene expression deregulation that was functionally enriched for gene ontologies related to cell adhesion, cell junction, muscle contraction and metabolism. Our results highlight the clinical significance of PARN and NOC on the survival in SCC diagnosed patients. We demonstrate that the enzymes are implicated in important phenotypes pertinent to cancer biology and provide information on their role in the regulation of gene expression in SCC. Overall, our results support an emerging role for deadenylases in SCC and contribute to the understanding of their role in cancer biology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Other 3 13%
Student > Bachelor 2 9%
Professor > Associate Professor 2 9%
Researcher 2 9%
Other 2 9%
Unknown 5 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 35%
Agricultural and Biological Sciences 7 30%
Immunology and Microbiology 1 4%
Medicine and Dentistry 1 4%
Chemistry 1 4%
Other 0 0%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2015.
All research outputs
#18,430,119
of 22,832,057 outputs
Outputs from Molecular Cancer
#1,291
of 1,721 outputs
Outputs of similar age
#205,286
of 285,414 outputs
Outputs of similar age from Molecular Cancer
#24
of 37 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,721 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,414 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.