↓ Skip to main content

Elastin degradation products in acute lung injury induced by gastric contents aspiration

Overview of attention for article published in Respiratory Research, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Elastin degradation products in acute lung injury induced by gastric contents aspiration
Published in
Respiratory Research, August 2018
DOI 10.1186/s12931-018-0873-1
Pubmed ID
Authors

Pedro Ayala, Raúl Vivar, Rebeca Montalva, Pablo Olmos, Manuel Meneses, Gisella R. Borzone

Abstract

Gastric contents aspiration is a high-risk condition for acute lung injury (ALI). Consequences range from subclinical pneumonitis to respiratory failure, depending on the volume of aspirate. A large increment in inflammatory cells, an important source of elastase, potentially capable of damaging lung tissue, has been described in experimental models of aspiration. We hypothesized that in early stages of aspiration-induced ALI, there is proteolytic degradation of elastin, preceding collagen deposition. Our aim was to evaluate whether after a single orotracheal instillation of gastric fluid, there is evidence of elastin degradation. Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 12 and 24 h and at day 4 after instillation (n = 6/group). We used immunodetection of soluble elastin in lung tissue and BALF and correlated BALF levels of elastin degradation products with markers of ALI. We investigated possible factors involved in elastin degradation and evaluated whether a similar pattern of elastin degradation can be found in BALF samples of patients with interstitial lung diseases known to have aspirated. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. We found evidence of early proteolytic degradation of lung elastin. Elastin degradation products are detected both in lung tissue and BALF in the first 24 h and are significantly reduced at day 4. They correlate significantly with ALI markers, particularly PMN cell count, are independent of acidity and have a similar molecular weight as those obtained using pancreatic elastase. Evaluation of BALF from patients revealed the presence of elastin degradation products not present in controls that are similar to those found in BALF of rats treated with gastric fluid. A single instillation of gastric fluid into the lungs induces early proteolytic degradation of elastin, in relation to the magnitude of alveolar-capillary barrier derangement. PMN-derived proteases released during ALI are mostly responsible for this damage. BALF from patients showed elastin degradation products similar to those found in rats treated with gastric fluid. Long-lasting effects on lung elastic properties could be expected under conditions of repeated instillations of gastric fluid in experimental animals or repeated aspiration events in humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 28%
Student > Master 3 17%
Student > Ph. D. Student 3 17%
Professor > Associate Professor 2 11%
Student > Doctoral Student 2 11%
Other 2 11%
Unknown 1 6%
Readers by discipline Count As %
Medicine and Dentistry 5 28%
Agricultural and Biological Sciences 5 28%
Engineering 2 11%
Psychology 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Other 1 6%
Unknown 2 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2018.
All research outputs
#17,292,294
of 25,385,509 outputs
Outputs from Respiratory Research
#2,216
of 3,062 outputs
Outputs of similar age
#222,907
of 345,542 outputs
Outputs of similar age from Respiratory Research
#50
of 66 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,542 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.