↓ Skip to main content

Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone

Overview of attention for article published in Microbial Cell Factories, September 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
3 X users
patent
1 patent

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
132 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
Published in
Microbial Cell Factories, September 2018
DOI 10.1186/s12934-018-0984-x
Pubmed ID
Authors

Jeffrey J. Czajka, Justin A. Nathenson, Veronica T. Benites, Edward E. K. Baidoo, Qianshun Cheng, Yechun Wang, Yinjie J. Tang

Abstract

β-Ionone is a fragrant terpenoid that generates a pleasant floral scent and is used in diverse applications as a cosmetic and flavoring ingredient. A growing consumer desire for natural products has increased the market demand for natural β-ionone. To date, chemical extraction from plants remains the main approach for commercial natural β-ionone production. Unfortunately, changing climate and geopolitical issues can cause instability in the β-ionone supply chain. Microbial fermentation using generally recognized as safe (GRAS) yeast offers an alternative method for producing natural β-ionone. Yarrowia lipolytica is an attractive host due to its oleaginous nature, established genetic tools, and large intercellular pool size of acetyl-CoA (the terpenoid backbone precursor). A push-pull strategy via genome engineering was applied to a Y. lipolytica PO1f derived strain. Heterologous and native genes in the mevalonate pathway were overexpressed to push production to the terpenoid backbone geranylgeranyl pyrophosphate, while the carB and biofunction carRP genes from Mucor circinelloides were introduced to pull flux towards β-carotene (i.e., ionone precursor). Medium tests combined with machine learning based data analysis and 13C metabolite labeling investigated influential nutrients for the β-carotene strain that achieved > 2.5 g/L β-carotene in a rich medium. Further introduction of the carotenoid cleavage dioxygenase 1 (CCD1) from Osmanthus fragrans resulted in the β-ionone production. Utilization of in situ dodecane trapping avoided ionone loss from vaporization (with recovery efficiencies of ~ 76%) during fermentation operations, which resulted in titers of 68 mg/L β-ionone in shaking flasks and 380 mg/L in a 2 L fermenter. Both β-carotene medium tests and β-ionone fermentation outcomes indicated the last enzymatic step CCD1 (rather than acetyl-CoA supply) as the key bottleneck. We engineered a GRAS Y. lipolytica platform for sustainable and economical production of the natural aroma β-ionone. Although β-carotene could be produced at high titers by Y. lipolytica, the synthesis of β-ionone was relatively poor, possibly due to low CCD1 activity and non-specific CCD1 cleavage of β-carotene. In addition, both β-carotene and β-ionone strains showed decreased performances after successive sub-cultures. For industrial application, β-ionone fermentation efforts should focus on both CCD enzyme engineering and strain stability improvement.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 132 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 14%
Researcher 18 14%
Student > Master 18 14%
Student > Bachelor 10 8%
Student > Doctoral Student 7 5%
Other 18 14%
Unknown 43 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 17%
Agricultural and Biological Sciences 12 9%
Chemistry 11 8%
Engineering 10 8%
Chemical Engineering 7 5%
Other 16 12%
Unknown 53 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2022.
All research outputs
#6,047,080
of 23,332,901 outputs
Outputs from Microbial Cell Factories
#396
of 1,643 outputs
Outputs of similar age
#105,294
of 336,371 outputs
Outputs of similar age from Microbial Cell Factories
#7
of 34 outputs
Altmetric has tracked 23,332,901 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 1,643 research outputs from this source. They receive a mean Attention Score of 4.5. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,371 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.