↓ Skip to main content

HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures

Overview of attention for article published in BMC Bioinformatics, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures
Published in
BMC Bioinformatics, September 2018
DOI 10.1186/s12859-018-2312-1
Pubmed ID
Authors

Hani Z. Girgis, Alfredo Velasco, Zachary E. Reyes

Abstract

Histone modifications play important roles in gene regulation, heredity, imprinting, and many human diseases. The histone code is complex and consists of more than 100 marks. Therefore, biologists need computational tools to characterize general signatures representing the distributions of tens of chromatin marks around thousands of regions. To this end, we developed a software tool, HebbPlot, which utilizes a Hebbian neural network in learning a general chromatin signature from regions with a common function. Hebbian networks can learn the associations between tens of marks and thousands of regions. HebbPlot presents a signature as a digital image, which can be easily interpreted. Moreover, signatures produced by HebbPlot can be compared quantitatively. We validated HebbPlot in six case studies. The results of these case studies are novel or validating results already reported in the literature, indicating the accuracy of HebbPlot. Our results indicate that promoters have a directional chromatin signature; several marks tend to stretch downstream or upstream. H3K4me3 and H3K79me2 have clear directional distributions around active promoters. In addition, the signatures of high- and low-CpG promoters are different; H3K4me3, H3K9ac, and H3K27ac are the most different marks. When we studied the signatures of enhancers active in eight tissues, we observed that these signatures are similar, but not identical. Further, we identified some histone modifications - H3K36me3, H3K79me1, H3K79me2, and H4K8ac - that are associated with coding regions of active genes. Other marks - H4K12ac, H3K14ac, H3K27me3, and H2AK5ac - were found to be weakly associated with coding regions of inactive genes. This study resulted in a novel software tool, HebbPlot, for learning and visualizing the chromatin signature of a genetic element. Using HebbPlot, we produced a visual catalog of the signatures of multiple genetic elements in 57 cell types available through the Roadmap Epigenomics Project. Furthermore, we made a progress toward a functional catalog consisting of 22 histone marks. In sum, HebbPlot is applicable to a wide array of studies, facilitating the deciphering of the histone code.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Student > Master 3 14%
Student > Ph. D. Student 3 14%
Student > Postgraduate 2 9%
Other 1 5%
Other 2 9%
Unknown 5 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 27%
Agricultural and Biological Sciences 6 27%
Mathematics 1 5%
Computer Science 1 5%
Psychology 1 5%
Other 2 9%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2018.
All research outputs
#15,018,183
of 23,102,082 outputs
Outputs from BMC Bioinformatics
#5,084
of 7,329 outputs
Outputs of similar age
#200,743
of 335,675 outputs
Outputs of similar age from BMC Bioinformatics
#62
of 94 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,329 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,675 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.