↓ Skip to main content

Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes

Overview of attention for article published in BMC Genomics, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes
Published in
BMC Genomics, September 2018
DOI 10.1186/s12864-018-5006-1
Pubmed ID
Authors

Gulden Olgun, Ozgur Sahin, Oznur Tastan

Abstract

Long non-coding RNAs (lncRNAs) can indirectly regulate mRNAs expression levels by sequestering microRNAs (miRNAs), and act as competing endogenous RNAs (ceRNAs) or as sponges. Previous studies identified lncRNA-mediated sponge interactions in various cancers including the breast cancer. However, breast cancer subtypes are quite distinct in terms of their molecular profiles; therefore, ceRNAs are expected to be subtype-specific as well. To find lncRNA-mediated ceRNA interactions in breast cancer subtypes, we develop an integrative approach. We conduct partial correlation analysis and kernel independence tests on patient gene expression profiles and further refine the candidate interactions with miRNA target information. We find that although there are sponges common to multiple subtypes, there are also distinct subtype-specific interactions. Functional enrichment of mRNAs that participate in these interactions highlights distinct biological processes for different subtypes. Interestingly, some of the ceRNAs also reside in close proximity in the genome; for example, those involving HOX genes, HOTAIR, miR-196a-1 and miR-196a-2. We also discover subtype-specific sponge interactions with high prognostic potential. We found that patients differ significantly in their survival distributions if they are group based on the expression patterns of specific ceRNA interactions. However, it is not the case if the expression of individual RNAs participating in ceRNA is used. These results can help shed light on subtype-specific mechanisms of breast cancer, and the methodology developed herein can help uncover sponges in other diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 18%
Student > Master 6 18%
Researcher 4 12%
Student > Bachelor 4 12%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 10 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 29%
Medicine and Dentistry 4 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Computer Science 2 6%
Agricultural and Biological Sciences 2 6%
Other 3 9%
Unknown 11 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2018.
All research outputs
#14,140,033
of 23,102,082 outputs
Outputs from BMC Genomics
#5,388
of 10,709 outputs
Outputs of similar age
#181,404
of 335,392 outputs
Outputs of similar age from BMC Genomics
#79
of 189 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,709 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,392 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 189 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.