↓ Skip to main content

Seasonal variations in Plasmodium falciparum genetic diversity and multiplicity of infection in asymptomatic children living in southern Ghana

Overview of attention for article published in BMC Infectious Diseases, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Seasonal variations in Plasmodium falciparum genetic diversity and multiplicity of infection in asymptomatic children living in southern Ghana
Published in
BMC Infectious Diseases, August 2018
DOI 10.1186/s12879-018-3350-z
Pubmed ID
Authors

Joshua Adjah, Bless Fiadzoe, Ruth Ayanful-Torgby, Linda E. Amoah

Abstract

Genetic diversity in Plasmodium falciparum (P. falciparum) parasites is a major hurdle to the control of malaria. This study monitored changes in the genetic diversity and the multiplicity of P. falciparum parasite infection in asymptomatic children living in southern Ghana at 3 month intervals between April 2015 and January 2016. Filter paper blood spots (DBS) were collected quarterly from children living in Obom, a community with perennial malaria transmission and Abura, a community with seasonal malaria transmission. Genomic DNA was extracted from the DBS and used in polymerase chain reaction (PCR)-based genotyping of the merozoite surface protein 1 (msp 1) and merozoite surface protein 2 (msp 2) genes. Out of a total of 787 samples that were collected from the two study sites, 59.2% (466/787) tested positive for P. falciparum. The msp 1 and msp 2 genes were successfully amplified from 73.8% (344/466) and 82.5% (385/466) of the P. falciparum positive samples respectively. The geometric mean MOI in Abura ranged between 1.17 (95% CI: 1.08-1.28) and 1.48 (95% CI: 1.36-1.60) and was significantly lower (p < 0.01, Dunn's multiple comparison test) than that determined in Obom, where the geometric mean MOI ranged between 1.82 (95% CI: 1.58-2.08) and 2.50 (95% CI: 2.33-2.678) over the study period. Whilst the msp 1 R033:MAD20:KI allelic family ratio was dynamic, the msp 2 3D7:FC27 allelic family ratio remained relatively stable across the changing seasons in both sites. This study shows that seasonal variations in parasite diversity in these communities can be better estimated by msp 1 rather than msp 2 due to the constantly changing relative intra allelic frequencies observed in msp 1 and the fact that the dominance of any msp 2 allele was dependent on the transmission setting but not on the season as opposed to the dominance of any msp 1 allele, which was dependent on both the season and the transmission setting.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 16%
Student > Ph. D. Student 12 13%
Student > Postgraduate 9 10%
Researcher 9 10%
Student > Bachelor 6 6%
Other 10 11%
Unknown 32 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 25%
Medicine and Dentistry 11 12%
Immunology and Microbiology 8 9%
Agricultural and Biological Sciences 7 8%
Social Sciences 4 4%
Other 7 8%
Unknown 33 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#13,259,783
of 23,102,082 outputs
Outputs from BMC Infectious Diseases
#3,173
of 7,752 outputs
Outputs of similar age
#163,120
of 335,220 outputs
Outputs of similar age from BMC Infectious Diseases
#58
of 163 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,752 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.3. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,220 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.