↓ Skip to main content

The role of invertases in plant compensatory responses to simulated herbivory

Overview of attention for article published in BMC Plant Biology, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of invertases in plant compensatory responses to simulated herbivory
Published in
BMC Plant Biology, November 2015
DOI 10.1186/s12870-015-0655-6
Pubmed ID
Authors

Madhura H. Siddappaji, Daniel R. Scholes, Sindhu M. Krishnankutty, Bernarda Calla, Steven J. Clough, Raymond E. Zielinski, Ken N. Paige

Abstract

The ability of a plant to overcome animal-induced damage is referred to as compensation or tolerance and ranges from undercompensation (decreased fitness when damaged) to overcompensation (increased fitness when damaged). Although it is clear that genetic variation for compensation exists among plants, little is known about the specific genetic underpinnings leading to enhanced fitness. Our previous study identified the enzyme GLUCOSE-6-PHOSPHATE DEHYDROGENASE 1 (G6PD1) as a key regulator contributing to the phenomenon of overcompensation via its role in the oxidative pentose phosphate pathway (OPPP). Apart from G6PD1 we also identified an invertase gene which was up-regulated following damage and that potentially integrates with the OPPP. The invertase family of enzymes hydrolyze sucrose to glucose and fructose, whereby the glucose produced is shunted into the OPPP and presumably supports plant regrowth, development, and ultimately compensation. In the current study, we measured the relative expression of 12 invertase genes over the course of plant development in the Arabidopsis thaliana genotypes Columbia-4 and Landsberg erecta, which typically overcompensate and undercompensate, respectively, when damaged. We also compared the compensatory performances of a set of invertase knockout mutants to the Columbia-4 wild type. We report that Columbia-4 significantly up-regulated 9 of 12 invertase genes when damaged relative to when undamaged, and ultimately overcompensated for fruit production. Landsberg erecta, in contrast, down-regulated two invertase genes following damage and suffered reduced fitness. Knockout mutants of two invertase genes both exhibited significant undercompensation for fruit production, exhibiting a complete reversal of the wild type Col-4's overcompensation. Collectively, these results confirm that invertases are essential for not only normal plant growth and development, but also plants' abilities to regrow and ultimately compensate for fitness following apical damage.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Student > Doctoral Student 4 14%
Student > Bachelor 3 10%
Student > Master 3 10%
Researcher 3 10%
Other 3 10%
Unknown 6 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 55%
Environmental Science 3 10%
Biochemistry, Genetics and Molecular Biology 3 10%
Social Sciences 2 7%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2015.
All research outputs
#21,264,673
of 23,881,329 outputs
Outputs from BMC Plant Biology
#2,607
of 3,322 outputs
Outputs of similar age
#217,104
of 254,909 outputs
Outputs of similar age from BMC Plant Biology
#45
of 58 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,322 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 254,909 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.