↓ Skip to main content

A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality

Overview of attention for article published in BMC Bioinformatics, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality
Published in
BMC Bioinformatics, November 2015
DOI 10.1186/s12859-015-0803-x
Pubmed ID
Authors

Thu-Hien To, Edwin Jacox, Vincent Ranwez, Celine Scornavacca

Abstract

Given a gene and a species tree, reconciliation methods attempt to retrieve the macro-evolutionary events that best explain the discrepancies between the two tree topologies. The DTL parsimonious approach searches for a most parsimonious reconciliation between a gene tree and a (dated) species tree, considering four possible macro-evolutionary events (speciation, duplication, transfer, and loss) with specific costs. Unfortunately, many events are erroneously predicted due to errors in the input trees, inappropriate input cost values or because of the existence of several equally parsimonious scenarios. It is thus crucial to provide a measure of the reliability for predicted events. It has been recently proposed that the reliability of an event can be estimated via its frequency in the set of most parsimonious reconciliations obtained using a variety of reasonable input cost vectors. To compute such a support, a straightforward but time-consuming approach is to generate the costs slightly departing from the original ones, independently compute the set of all most parsimonious reconciliations for each vector, and combine these sets a posteriori. Another proposed approach uses Pareto-optimality to partition cost values into regions which induce reconciliations with the same number of DTL events. The support of an event is then defined as its frequency in the set of regions. However, often, the number of regions is not large enough to provide reliable supports. We present here a method to compute efficiently event supports via a polynomial-sized graph, which can represent all reconciliations for several different costs. Moreover, two methods are proposed to take into account alternative input costs: either explicitly providing an input cost range or allowing a tolerance for the over cost of a reconciliation. Our methods are faster than the region based method, substantially faster than the sampling-costs approach, and have a higher event-prediction accuracy on simulated data. We propose a new approach to improve the accuracy of event supports for parsimonious reconciliation methods to account for uncertainty in the input costs. Furthermore, because of their speed, our methods can be used on large gene families. Our algorithms are implemented in the ecceTERA program, freely available from http://mbb.univ-montp2.fr/MBB/ .

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 9%
Unknown 10 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 45%
Professor 2 18%
Student > Master 2 18%
Student > Doctoral Student 1 9%
Student > Ph. D. Student 1 9%
Other 0 0%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 45%
Biochemistry, Genetics and Molecular Biology 2 18%
Computer Science 2 18%
Environmental Science 1 9%
Medicine and Dentistry 1 9%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2015.
All research outputs
#20,296,405
of 22,833,393 outputs
Outputs from BMC Bioinformatics
#6,861
of 7,288 outputs
Outputs of similar age
#235,706
of 281,503 outputs
Outputs of similar age from BMC Bioinformatics
#136
of 141 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,288 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,503 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.