↓ Skip to main content

Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
12 X users

Readers on

mendeley
182 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation
Published in
Journal of NeuroEngineering and Rehabilitation, September 2018
DOI 10.1186/s12984-018-0404-9
Pubmed ID
Authors

Han Houdijk, Daphne Wezenberg, Laura Hak, Andrea Giovanni Cutti

Abstract

Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 182 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 182 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 33 18%
Student > Bachelor 22 12%
Student > Ph. D. Student 20 11%
Researcher 14 8%
Student > Doctoral Student 5 3%
Other 19 10%
Unknown 69 38%
Readers by discipline Count As %
Engineering 51 28%
Nursing and Health Professions 19 10%
Medicine and Dentistry 18 10%
Sports and Recreations 6 3%
Biochemistry, Genetics and Molecular Biology 2 1%
Other 13 7%
Unknown 73 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2018.
All research outputs
#3,225,236
of 23,102,082 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#173
of 1,294 outputs
Outputs of similar age
#67,151
of 335,873 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#5
of 26 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,294 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,873 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.