↓ Skip to main content

Comparison of individual and pooled urine samples for estimating the presence and intensity of Schistosoma haematobium infections at the population level

Overview of attention for article published in Parasites & Vectors, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of individual and pooled urine samples for estimating the presence and intensity of Schistosoma haematobium infections at the population level
Published in
Parasites & Vectors, November 2015
DOI 10.1186/s13071-015-1205-7
Pubmed ID
Authors

Abraham Degarege, Berhanu Erko, Zeleke Mekonnen, Mengistu Legesse, Yohannes Negash, Jozef Vercruysse, Bruno Levecke

Abstract

There is a lack of cost-effective diagnostic strategies to evaluate whether mass drug administration (MDA) programmes to control Schistosoma haematobium progress as anticipated. The purpose of this study is to provide a proof-of-principle for examination of pooled urine samples as a strategy for rapid assessment of presence and intensity of Schistosoma haematobium infections at the population level. A total of 640 urine samples were collected from 520 school-aged children (520 at baseline and 120 at follow-up) during a clinical trial that was designed to assess the efficacy of praziquantel against Schistosoma haematobium infections in Ethiopia. Individual and pooled urine samples were screened using the filtration technique (volume of 10 ml urine) to determine the number of S. haematobium eggs in 10 ml of urine. Samples were pooled into pools of 5 (n = 128), 10 (n = 64) and 20 (n = 32) individual samples. The sensitivity, the probability of finding at least one egg in a pooled sample when the mean urine egg count (UEC) of the corresponding individual urine samples was not zero, was calculated for each pool size. UECs of a pooled examination strategy were compared with the mean UECs of the corresponding individual samples. The sensitivity of a pooled examination strategy was 50.6 % for pools of 5, 68.6 % for pools of 10 and 63.3 % for pools of 20. The sensitivity of a pooled examination strategy increased as a function of increasing mean UEC of the corresponding individual urine samples. For each of the three pool sizes, there was a significant positive correlation between mean UECs of individual and those obtained in pooled samples (correlation coefficient: 0.81 - 0.93). Examination of pools of 5 provided significantly lower UECs compared to the individual examination strategy (3.9 eggs/10 ml urine versus 5.0 eggs/10 ml urine). For pools of 10 (4.4 eggs/10 ml) and 20 (4.2 eggs/10 ml), no significant difference in UECs was observed. Examination of pooled urine samples applying urine filtration holds promise for rapid assessment of intensity of S. haematobium infections, but may fail to detect presence of infections when endemicity is low. Further investigation is required to determine when and how pooling can be optimally implemented in monitoring of mass drug administration programmes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 21%
Student > Master 11 19%
Lecturer 6 11%
Other 4 7%
Student > Ph. D. Student 4 7%
Other 12 21%
Unknown 8 14%
Readers by discipline Count As %
Medicine and Dentistry 17 30%
Agricultural and Biological Sciences 9 16%
Social Sciences 5 9%
Biochemistry, Genetics and Molecular Biology 4 7%
Nursing and Health Professions 4 7%
Other 11 19%
Unknown 7 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 July 2016.
All research outputs
#17,777,370
of 22,833,393 outputs
Outputs from Parasites & Vectors
#3,817
of 5,465 outputs
Outputs of similar age
#169,629
of 252,470 outputs
Outputs of similar age from Parasites & Vectors
#100
of 157 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,465 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,470 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 157 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.