↓ Skip to main content

Inheritance and heritability of deltamethrin resistance under laboratory conditions of Triatoma infestans from Bolivia

Overview of attention for article published in Parasites & Vectors, November 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inheritance and heritability of deltamethrin resistance under laboratory conditions of Triatoma infestans from Bolivia
Published in
Parasites & Vectors, November 2015
DOI 10.1186/s13071-015-1211-9
Pubmed ID
Authors

Marinely Bustamante Gomez, Grasielle D’Avila Caldas Pessoa, Aline Cristine Luiz Rosa, Jorge Espinoza Echeverria, Liléia Gonçalves Diotaiuti

Abstract

Over the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles. Experimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (♀ x ♂ and ♂ x ♀), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (D ML ). In addition, realized heritability (h(2)) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay. The result for DO and D ML (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of ♀S x ♂R and ♂S x ♀R was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h(2) was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony. The inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 13%
Researcher 4 13%
Student > Ph. D. Student 4 13%
Other 3 10%
Student > Bachelor 3 10%
Other 2 7%
Unknown 10 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 37%
Biochemistry, Genetics and Molecular Biology 4 13%
Medicine and Dentistry 2 7%
Immunology and Microbiology 1 3%
Environmental Science 1 3%
Other 2 7%
Unknown 9 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2015.
All research outputs
#12,820,725
of 22,833,393 outputs
Outputs from Parasites & Vectors
#2,135
of 5,465 outputs
Outputs of similar age
#110,800
of 252,470 outputs
Outputs of similar age from Parasites & Vectors
#41
of 157 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,465 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,470 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 157 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.