↓ Skip to main content

Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates

Overview of attention for article published in Malaria Journal, November 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates
Published in
Malaria Journal, November 2015
DOI 10.1186/s12936-015-0942-6
Pubmed ID
Authors

Jung-Mi Kang, Jinyoung Lee, Pyo-Yun Cho, Sung-Ung Moon, Hye-Lim Ju, Seong Kyu Ahn, Woon-Mok Sohn, Hyeong-Woo Lee, Tong-Soo Kim, Byoung-Kuk Na

Abstract

Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important implications for the design of a vaccine incorporating PvAMA-1.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Student > Master 7 21%
Researcher 5 15%
Student > Bachelor 4 12%
Student > Doctoral Student 1 3%
Other 1 3%
Unknown 9 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 15%
Agricultural and Biological Sciences 5 15%
Pharmacology, Toxicology and Pharmaceutical Science 3 9%
Computer Science 3 9%
Nursing and Health Professions 2 6%
Other 6 18%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2016.
All research outputs
#18,345,259
of 23,577,654 outputs
Outputs from Malaria Journal
#4,933
of 5,653 outputs
Outputs of similar age
#171,479
of 253,733 outputs
Outputs of similar age from Malaria Journal
#115
of 146 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,653 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 253,733 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.