↓ Skip to main content

Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators

Overview of attention for article published in BMC Systems Biology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators
Published in
BMC Systems Biology, November 2015
DOI 10.1186/s12918-015-0228-1
Pubmed ID
Authors

Megha Padi, John Quackenbush

Abstract

Genome-wide libraries of yeast deletion strains have been used to screen for genes that drive phenotypes such as stress response. A surprising observation emerging from these studies is that the genes with the largest changes in mRNA expression during a state transition are not those that drive that transition. Here, we show that integrating gene expression data with context-independent protein interaction networks can help prioritize master regulators that drive biological phenotypes. Genes essential for survival had previously been shown to exhibit high centrality in protein interaction networks. However, the set of genes that drive growth in any specific condition is highly context-dependent. We inferred regulatory networks from gene expression data and transcription factor binding motifs in Saccharomyces cerevisiae, and found that high-degree nodes in regulatory networks are enriched for transcription factors that drive the corresponding phenotypes. We then found that using a metric combining protein interaction and transcriptional networks improved the enrichment for drivers in many of the contexts we examined. We applied this principle to a dataset of gene expression in normal human fibroblasts expressing a panel of viral oncogenes. We integrated regulatory interactions inferred from this data with a database of yeast two-hybrid protein interactions and ranked 571 human transcription factors by their combined network score. The ranked list was significantly enriched in known cancer genes that could not be found by standard differential expression or enrichment analyses. There has been increasing recognition that network-based approaches can provide insight into critical cellular elements that help define phenotypic state. Our analysis suggests that no one network, based on a single data type, captures the full spectrum of interactions. Greater insight can instead be gained by exploring multiple independent networks and by choosing an appropriate metric on each network. Moreover we can improve our ability to rank phenotypic drivers by combining the information from individual networks. We propose that such integrative network analysis could be used to combine clinical gene expression data with interaction databases to prioritize patient- and disease-specific therapeutic targets.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Russia 1 1%
Unknown 65 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 31%
Researcher 15 22%
Student > Master 8 12%
Student > Bachelor 4 6%
Student > Doctoral Student 2 3%
Other 7 10%
Unknown 10 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 30%
Biochemistry, Genetics and Molecular Biology 15 22%
Computer Science 7 10%
Engineering 4 6%
Medicine and Dentistry 3 4%
Other 5 7%
Unknown 13 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2015.
All research outputs
#15,332,207
of 23,577,654 outputs
Outputs from BMC Systems Biology
#603
of 1,139 outputs
Outputs of similar age
#157,433
of 283,115 outputs
Outputs of similar age from BMC Systems Biology
#18
of 31 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,139 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,115 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.