↓ Skip to main content

Do healthcare services behave as complex systems? Analysis of patterns of attendance and implications for service delivery

Overview of attention for article published in BMC Medicine, September 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Do healthcare services behave as complex systems? Analysis of patterns of attendance and implications for service delivery
Published in
BMC Medicine, September 2018
DOI 10.1186/s12916-018-1132-5
Pubmed ID
Authors

Christopher Burton, Alison Elliott, Amanda Cochran, Tom Love

Abstract

The science of complex systems has been proposed as a way of understanding health services and the demand for them, but there is little quantitative evidence to support this. We analysed patterns of healthcare use in different urgent care settings to see if they showed two characteristic statistical features of complex systems: heavy-tailed distributions (including the inverse power law) and generative burst patterns. We conducted three linked studies. In study 1 we analysed the distribution of number of contacts per patient with an urgent care service in two settings: emergency department (ED) and primary care out-of-hours (PCOOH) services. We hypothesised that these distributions should be heavy-tailed (inverse power law or log-normal) in keeping with typical complex systems. In study 2 we analysed the distribution of bursts of contact with urgent care services by individuals: correlated bursts of activity occur in complex systems and represent a mechanism by which overall heavy-tailed distributions arise. In study 3 we replicated the approach of study 1 using data systematically identified from published sources. Study 1 involved data from a PCOOH service in Scotland (725,000) adults, 1.1 million contacts) and an ED in New Zealand (60,000 adults, 98,000 contacts). The total number of contacts per individual in each dataset was statistically indistinguishable from an inverse power law (p > 0.05) above 4 contacts for the PCOOH data and 3 contacts for the ED data. Study 2 found the distribution of contact bursts closely followed a heavy-tailed distribution (p < 0.008), indicating the presence of correlated bursts. Study 3 identified data from 17 studies across 8 countries and found distributions similar to study 1 in all of them. Urgent healthcare use displays characteristic statistical features of large complex systems. These studies provide strong quantitative evidence that healthcare services behave as complex systems and have important implications for urgent care. Interventions to manage demand must address drivers for consultation across the whole system: focusing on only the highest users (in the tail of the distribution) will have limited impact on efficiency. Bursts of attendance - and ways to shorten them - represent promising targets for managing demand.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 22%
Student > Master 14 14%
Student > Ph. D. Student 10 10%
Student > Doctoral Student 6 6%
Professor 5 5%
Other 13 13%
Unknown 28 29%
Readers by discipline Count As %
Medicine and Dentistry 25 26%
Social Sciences 13 13%
Nursing and Health Professions 7 7%
Engineering 3 3%
Computer Science 2 2%
Other 10 10%
Unknown 37 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 August 2020.
All research outputs
#17,989,170
of 23,102,082 outputs
Outputs from BMC Medicine
#3,168
of 3,466 outputs
Outputs of similar age
#241,159
of 336,158 outputs
Outputs of similar age from BMC Medicine
#65
of 73 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,466 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.7. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,158 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.