↓ Skip to main content

A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis

Overview of attention for article published in BMC Pulmonary Medicine, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis
Published in
BMC Pulmonary Medicine, November 2015
DOI 10.1186/s12890-015-0142-8
Pubmed ID
Authors

Yong Huang, Shwu-Fan Ma, Rekha Vij, Justin M. Oldham, Jose Herazo-Maya, Steven M. Broderick, Mary E. Strek, Steven R. White, D. Kyle Hogarth, Nathan K. Sandbo, Yves A. Lussier, Kevin F. Gibson, Naftali Kaminski, Joe G. N. Garcia, Imre Noth

Abstract

The course of disease for patients with idiopathic pulmonary fibrosis (IPF) is highly heterogeneous. Prognostic models rely on demographic and clinical characteristics and are not reproducible. Integrating data from genomic analyses may identify novel prognostic models and provide mechanistic insights into IPF. Total RNA of peripheral blood mononuclear cells was subjected to microarray profiling in a training (45 IPF individuals) and two independent validation cohorts (21 IPF/10 controls, and 75 IPF individuals, respectively). To identify a gene set predictive of IPF prognosis, we incorporated genomic, clinical, and outcome data from the training cohort. Predictor genes were selected if all the following criteria were met: 1) Present in a gene co-expression module from Weighted Gene Co-expression Network Analysis (WGCNA) that correlated with pulmonary function (p < 0.05); 2) Differentially expressed between observed "good" vs. "poor" prognosis with fold change (FC) >1.5 and false discovery rate (FDR) < 2 %; and 3) Predictive of mortality (p < 0.05) in univariate Cox regression analysis. "Survival risk group prediction" was adopted to construct a functional genomic model that used the IPF prognostic predictor gene set to derive a prognostic index (PI) for each patient into either high or low risk for survival outcomes. Prediction accuracy was assessed with a repeated 10-fold cross-validation algorithm and independently assessed in two validation cohorts through multivariate Cox regression survival analysis. A set of 118 IPF prognostic predictor genes was used to derive the functional genomic model and PI. In the training cohort, high-risk IPF patients predicted by PI had significantly shorter survival compared to those labeled as low-risk patients (log rank p < 0.001). The prediction accuracy was further validated in two independent cohorts (log rank p < 0.001 and 0.002). Functional pathway analysis revealed that the canonical pathways enriched with the IPF prognostic predictor gene set were involved in T-cell biology, including iCOS, T-cell receptor, and CD28 signaling. Using supervised and unsupervised analyses, we identified a set of IPF prognostic predictor genes and derived a functional genomic model that predicted high and low-risk IPF patients with high accuracy. This genomic model may complement current prognostic tools to deliver more personalized care for IPF patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 2%
Unknown 62 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 24%
Other 7 11%
Student > Master 6 10%
Student > Ph. D. Student 5 8%
Student > Postgraduate 4 6%
Other 11 17%
Unknown 15 24%
Readers by discipline Count As %
Medicine and Dentistry 22 35%
Biochemistry, Genetics and Molecular Biology 8 13%
Agricultural and Biological Sciences 7 11%
Engineering 4 6%
Immunology and Microbiology 2 3%
Other 5 8%
Unknown 15 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2016.
All research outputs
#13,959,398
of 22,833,393 outputs
Outputs from BMC Pulmonary Medicine
#799
of 1,918 outputs
Outputs of similar age
#195,607
of 386,452 outputs
Outputs of similar age from BMC Pulmonary Medicine
#18
of 44 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,918 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,452 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.