↓ Skip to main content

Genetic diversity of fluorescent protein genes generated by gene duplication and alternative splicing in reef-building corals

Overview of attention for article published in Zoological Letters, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic diversity of fluorescent protein genes generated by gene duplication and alternative splicing in reef-building corals
Published in
Zoological Letters, July 2015
DOI 10.1186/s40851-015-0020-5
Pubmed ID
Authors

Shiho Takahashi-Kariyazono, Yoko Satta, Yohey Terai

Abstract

Reef-building corals (Scleractinia) exhibit various colors, of which fluorescent proteins (FPs) are a major determinant. Gene duplication is considered a major mechanism in the generation of the FP gene family and color diversity. Examining gene duplication events and subsequent evolution may improve our understanding of FP gene family diversity. We isolated a novel FP gene family from one individual of Montipora sp., which we named monGFP (GFP gene from Montipora sp.). This gene family consists of at least four genes that produce at least six different cDNA sequences. The sequences were categorized into two types based on the length of cDNA; this difference is attributed to alternative splicing. Although the amino acid sequences were different, the emission spectra of the monGFP variants were nearly identical (518-521 nm). In addition to this gene family, we isolated ten paralogous AdiFP10 (Adi-Fluorescent protein-10 gene from Acropora digitifera) sequences from cDNA of two Acropora species, A. digitifera and A. tenuis. Based on our phylogenetic analysis, five sequences from A. digitifera and four sequences from A. tenuis appeared to be in a different cluster from AdiFP10, suggesting a new FP gene cluster. The FP sequences were likely to have been generated independently in each species or generated by gene duplications in the ancestral lineage of Acropora, followed by extensive gene conversion within each species. Our results clarify a part of the diversification process of FP genes during the evolutionary history of Montipora and Acropora species. Our analyses of monGFP indicate that FPs translated from different splicing variants and gene copies have evolved without changes in the function of fluorescence, and gene copies have been evolved under purifying selection. On the other hand, AdiFP10 paralogs and other RFP genes in Acropora species may have diversified their functions. Identification of conserved and divergent modes of evolution after the duplication of FP genes may reflect variation in the biological roles of different FPs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Student > Bachelor 2 14%
Student > Ph. D. Student 2 14%
Professor 1 7%
Other 1 7%
Other 2 14%
Unknown 2 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 43%
Biochemistry, Genetics and Molecular Biology 2 14%
Environmental Science 1 7%
Medicine and Dentistry 1 7%
Neuroscience 1 7%
Other 0 0%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 November 2015.
All research outputs
#20,297,343
of 22,834,308 outputs
Outputs from Zoological Letters
#161
of 168 outputs
Outputs of similar age
#220,639
of 264,095 outputs
Outputs of similar age from Zoological Letters
#8
of 8 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 168 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one.