↓ Skip to main content

Planning comparison of five automated treatment planning solutions for locally advanced head and neck cancer

Overview of attention for article published in Radiation Oncology, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Planning comparison of five automated treatment planning solutions for locally advanced head and neck cancer
Published in
Radiation Oncology, September 2018
DOI 10.1186/s13014-018-1113-z
Pubmed ID
Authors

J. Krayenbuehl, M. Zamburlini, S. Ghandour, M. Pachoud, S. Tanadini-Lang, J. Tol, M. Guckenberger, W. F. A. R. Verbakel

Abstract

Automated treatment planning and/or optimization systems (ATPS) are in the process of broad clinical implementation aiming at reducing inter-planner variability, reducing the planning time allocated for the optimization process and improving plan quality. Five different ATPS used clinically were evaluated for advanced head and neck cancer (HNC). Three radiation oncology departments compared 5 different ATPS: 1) Automatic Interactive Optimizer (AIO) in combination with RapidArc (in-house developed and Varian Medical Systems); 2) Auto-Planning (AP) (Philips Radiation Oncology Systems); 3) RapidPlan version 13.6 (RP1) with HNC model from University Hospital A (Varian Medical Systems, Palo Alto, USA); 4) RapidPlan version 13.7 (RP2) combined with scripting for automated setup of fields with HNC model from University Hospital B; 5) Raystation multicriteria optimization algorithm version 5 (RS) (Laboratories AB, Stockholm, Sweden). Eight randomly selected HNC cases from institution A and 8 from institution B were used. PTV coverage, mean and maximum dose to the organs at risk and effective planning time were compared. Ranking was done based on 3 Gy increments for the parallel organs. All planning systems achieved the hard dose constraints for the PTVs and serial organs for all patients. Overall, AP achieved the best ranking for the parallel organs followed by RS, AIO, RP2 and RP1. The oral cavity mean dose was the lowest for RS (31.3 ± 17.6 Gy), followed by AP (33.8 ± 17.8 Gy), RP1 (34.1 ± 16.7 Gy), AIO (36.1 ± 16.8 Gy) and RP2 (36.3 ± 16.2 Gy). The submandibular glands mean dose was 33.6 ± 10.8 Gy (AP), 35.2 ± 8.4 Gy (AIO), 35.5 ± 9.3 Gy (RP2), 36.9 ± 7.6 Gy (RS) and 38.2 ± 7.0 Gy (RP1). The average effective planning working time was substantially different between the five ATPS (in minutes): < 2 ± 1 for AIO and RP2, 5 ± 1 for AP, 15 ± 2 for RP1 and 340 ± 48 for RS, respectively. All ATPS were able to achieve all planning DVH constraints and the effective working time was kept bellow 20 min for each ATPS except for RS. For the parallel organs, AP performed the best, although the differences were small.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 20%
Researcher 10 13%
Student > Bachelor 9 12%
Other 6 8%
Student > Master 6 8%
Other 9 12%
Unknown 20 27%
Readers by discipline Count As %
Physics and Astronomy 19 25%
Medicine and Dentistry 10 13%
Engineering 8 11%
Nursing and Health Professions 4 5%
Unspecified 2 3%
Other 6 8%
Unknown 26 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2018.
All research outputs
#12,913,076
of 23,103,436 outputs
Outputs from Radiation Oncology
#536
of 2,079 outputs
Outputs of similar age
#156,569
of 337,287 outputs
Outputs of similar age from Radiation Oncology
#14
of 42 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,079 research outputs from this source. They receive a mean Attention Score of 2.7. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,287 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.