↓ Skip to main content

Cortical tau load is associated with white matter hyperintensities

Overview of attention for article published in Acta Neuropathologica Communications, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
107 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cortical tau load is associated with white matter hyperintensities
Published in
Acta Neuropathologica Communications, September 2015
DOI 10.1186/s40478-015-0240-0
Pubmed ID
Authors

Kirsty E. McAleese, Michael Firbank, Madhurima Dey, Sean J. Colloby, Lauren Walker, Mary Johnson, Joshua R. Beverley, John Paul Taylor, Alan J. Thomas, John T. O’Brien, Johannes Attems

Abstract

Cerebral white matter lesions (WML), visualized as white matter hyperintensities (WMH) on T2-weighted MRI, encompass structural damage and loss of integrity of the cerebral white matter (WM) and are commonly assumed to be associated with small vessel disease (SVD). However, it has been suggested that WM damage may also be the result of degenerative axonal loss that is secondary to cortical Alzheimer's disease (AD) pathologies i.e., hyperphosphorylated tau (HPτ) and amyloid-beta (Aβ). Here we investigate the influence of HPτ, Aβ and SVD on WMH severity. 36 human post-mortem right fixed cerebral hemispheres (mean age 84.4 ± 7.7 years; male: 16, female: 20) containing varying amounts of AD-pathology (AD: 23, controls: 13) underwent T2- weighted MRI with WMH assessed according to the age related white matter change scale (ARWMC). After dissection, using tissue samples from the frontal, temporal, parietal and occipital regions from the right hemisphere, we quantitatively assessed cortical HPτ and Aβ pathology burden by measuring the percentage area covered by AT8 immunoreactivity (HPτ-IR) and 4G8 immunoreactivity (Aβ-IR), and assessed the severity of WM SVD by calculating the sclerotic index (SI) of WM arteries/arterioles. HPτ-IR, Aβ-IR, and SI were compared with ARWMC scores. HPτ-IR, Aβ-IR and WM ARWMC scores were all significantly higher in AD cases compared to controls, while SI values were similar between groups. ARWMC scores correlated with HPτ-IR, Aβ-IR and SI in various regions, however, linear regression revealed that only HPτ-IR was a significant independent predictor of ARWMC scores. Here we have shown that increasing cortical HPτ burden independently predicted the severity of WMH indicating its potentially important role in the pathogenesis of WM damage. Moreover, our findings suggest that in AD patients the presence of WMH may indicate cortical AD-associated pathology rather than SVD. Further studies are warranted to elucidate the pathological processes that lead to WM damage and to clarify if WMH may serve as a general biomarker for cortical AD-associated pathology.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 106 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 22%
Researcher 17 16%
Student > Bachelor 11 10%
Student > Master 10 9%
Professor 5 5%
Other 12 11%
Unknown 28 26%
Readers by discipline Count As %
Neuroscience 26 24%
Medicine and Dentistry 18 17%
Psychology 10 9%
Computer Science 5 5%
Agricultural and Biological Sciences 4 4%
Other 11 10%
Unknown 33 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2015.
All research outputs
#4,180,871
of 22,834,308 outputs
Outputs from Acta Neuropathologica Communications
#777
of 1,375 outputs
Outputs of similar age
#55,449
of 274,280 outputs
Outputs of similar age from Acta Neuropathologica Communications
#13
of 22 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,375 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.9. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,280 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.