↓ Skip to main content

Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells

Overview of attention for article published in Breast Cancer Research, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells
Published in
Breast Cancer Research, September 2018
DOI 10.1186/s13058-018-1036-5
Pubmed ID
Authors

Nicholas A. Zumwalde, Jill D. Haag, Michael N. Gould, Jenny E. Gumperz

Abstract

Antimicrobial T cells play key roles in the disease progression of cancers arising in mucosal epithelial tissues, such as the colon. However, little is known about microbe-reactive T cells within human breast ducts and whether these impact breast carcinogenesis. Epithelial ducts were isolated from primary human breast tissue samples, and the associated T lymphocytes were characterized using flow cytometric analysis. Functional assays were performed to determine T-cell cytokine secretion in response to bacterially treated human breast carcinoma cells. We show that human breast epithelial ducts contain mucosal associated invariant T (MAIT) cells, an innate T-cell population that recognizes specific bacterial metabolites presented by nonclassical MR1 antigen-presenting molecules. The MAIT cell population from breast ducts resembled that of peripheral blood in its innate lymphocyte phenotype (i.e., CD161, PLZF, and interleukin [IL]-18 receptor coexpression), but the breast duct MAIT cell population had a distinct T-cell receptor Vβ use profile and was markedly enriched for IL-17-producing cells compared with blood MAIT cells. Breast carcinoma cells that had been exposed to Escherichia coli activated MAIT cells in an MR1-dependent manner. However, whereas phorbol 12-myristate 13-acetate/ionomycin stimulation induced the production of both interferon-γ and IL-17 by breast duct MAIT cells, bacterially exposed breast carcinoma cells elicited a strongly IL-17-biased response. Breast carcinoma cells also showed upregulated expression of natural killer group 2 member D (NKG2D) ligands compared with primary breast epithelial cells, and the NKG2D receptor contributed to MAIT cell activation by the carcinoma cells. These results demonstrate that MAIT cells from human breast ducts mediate a selective T-helper 17 cell response to human breast carcinoma cells that were exposed to E. coli. Thus, cues from the breast microbiome and the expression of stress-associated ligands by neoplastic breast duct epithelial cells may shape MAIT cell responses during breast carcinogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 25%
Researcher 8 15%
Student > Bachelor 7 13%
Student > Master 6 11%
Lecturer 3 6%
Other 6 11%
Unknown 10 19%
Readers by discipline Count As %
Immunology and Microbiology 13 25%
Medicine and Dentistry 10 19%
Biochemistry, Genetics and Molecular Biology 7 13%
Chemistry 2 4%
Nursing and Health Professions 1 2%
Other 6 11%
Unknown 14 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2019.
All research outputs
#4,241,949
of 25,385,509 outputs
Outputs from Breast Cancer Research
#498
of 2,054 outputs
Outputs of similar age
#77,259
of 347,925 outputs
Outputs of similar age from Breast Cancer Research
#22
of 39 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,054 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.2. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,925 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.