↓ Skip to main content

PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease

Overview of attention for article published in Clinical Epigenetics, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
twitter
6 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease
Published in
Clinical Epigenetics, September 2018
DOI 10.1186/s13148-018-0547-3
Pubmed ID
Authors

Idoia Blanco-Luquin, Miren Altuna, Javier Sánchez-Ruiz de Gordoa, Amaya Urdánoz-Casado, Miren Roldán, María Cámara, Victoria Zelaya, María Elena Erro, Carmen Echavarri, Maite Mendioroz

Abstract

Whole-exome sequencing has revealed a rare missense variant in PLD3 gene (rs145999145) to be associated with late onset Alzheimer's disease (AD). Nevertheless, the association remains controversial and little is known about the role of PLD3 in AD. Interestingly, PLD3 encodes a phospholipase that may be involved in amyloid precursor protein (APP) processing. Our aim was to gain insight into the epigenetic mechanisms regulating PLD3 gene expression in the human hippocampus affected by AD. We assessed PLD3 mRNA expression by qPCR and protein levels by Western blot in frozen hippocampal samples from a cohort of neuropathologically confirmed pure AD cases and controls. Next, we profiled DNA methylation at cytosine-phosphate-guanine dinucleotide (CpG) site resolution by pyrosequencing and further validated results by bisulfite cloning sequencing in two promoter regions of the PLD3 gene. A 1.67-fold decrease in PLD3 mRNA levels (p value < 0.001) was observed in the hippocampus of AD cases compared to controls, and a slight decrease was also found by Western blot at protein level. Moreover, PLD3 mRNA levels inversely correlated with the average area of β-amyloid burden (tau-b = - 0,331; p value < 0.01) in the hippocampus. A differentially methylated region was identified within the alternative promoter of PLD3 gene showing higher DNA methylation levels in the AD hippocampus compared to controls (21.7 ± 4.7% vs. 18.3 ± 4.8%; p value < 0.05). PLD3 gene is downregulated in the human hippocampus in AD cases compared to controls. Altered epigenetic mechanisms, such as differential DNA methylation within an alternative promoter of PLD3 gene, may be involved in the pathological processes of AD. Moreover, PLD3 mRNA expression inversely correlates with hippocampal β-amyloid burden, which adds evidence to the hypothesis that PLD3 protein may contribute to AD development by modifying APP processing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 14%
Researcher 7 12%
Student > Master 6 11%
Student > Doctoral Student 4 7%
Student > Bachelor 3 5%
Other 8 14%
Unknown 21 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 21%
Neuroscience 8 14%
Medicine and Dentistry 4 7%
Agricultural and Biological Sciences 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 6 11%
Unknown 21 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2019.
All research outputs
#2,355,223
of 23,103,436 outputs
Outputs from Clinical Epigenetics
#133
of 1,271 outputs
Outputs of similar age
#51,093
of 337,668 outputs
Outputs of similar age from Clinical Epigenetics
#2
of 20 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,271 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,668 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.