↓ Skip to main content

Data-driven human transcriptomic modules determined by independent component analysis

Overview of attention for article published in BMC Bioinformatics, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Data-driven human transcriptomic modules determined by independent component analysis
Published in
BMC Bioinformatics, September 2018
DOI 10.1186/s12859-018-2338-4
Pubmed ID
Authors

Weizhuang Zhou, Russ B. Altman

Abstract

Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of high dimensionality, but the user-defined choice of gene sets can introduce biasness in results. In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic modules that can be used as features for machine learning. We evaluate the usability of these modules across six studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of differentially expressed features. We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were also identified via traditional gene-based approaches. The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their performance in low sample settings suggest that they should be employed in such studies in order to harness the data efficiently.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 15%
Student > Ph. D. Student 9 12%
Student > Master 7 9%
Professor 6 8%
Student > Bachelor 5 7%
Other 12 16%
Unknown 25 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 20%
Medicine and Dentistry 8 11%
Computer Science 6 8%
Agricultural and Biological Sciences 5 7%
Engineering 3 4%
Other 8 11%
Unknown 30 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2018.
All research outputs
#12,913,550
of 23,103,903 outputs
Outputs from BMC Bioinformatics
#3,659
of 7,329 outputs
Outputs of similar age
#158,203
of 341,518 outputs
Outputs of similar age from BMC Bioinformatics
#42
of 107 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,329 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,518 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.