↓ Skip to main content

Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study

Overview of attention for article published in Critical Care, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
45 X users
facebook
2 Facebook pages

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study
Published in
Critical Care, September 2018
DOI 10.1186/s13054-018-2137-3
Pubmed ID
Authors

Christian Karagiannidis, Andreas D. Waldmann, Péter L. Róka, Tina Schreiber, Stephan Strassmann, Wolfram Windisch, Stephan H. Böhm

Abstract

Electrical impedance tomography (EIT) has been used to guide mechanical ventilation in ICU patients with lung collapse. Its use in patients with obstructive pulmonary diseases has been rare since obstructions could not be monitored on a regional level at the bedside. The current study therefore determines breath-by-breath regional expiratory time constants in intubated patients with chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). Expiratory time constants calculated from the global impedance EIT signal were compared to the pneumatic volume signals measured with an electronic pneumotachograph. EIT-derived expiratory time constants were additionally determined on a regional and pixelwise level. However, regional EIT signals on a single pixel level could in principle not be compared with similar pneumatic changes since these measurements cannot be obtained in patients. For this study, EIT measurements were conducted in 14 intubated patients (mean Simplified Acute Physiology Score II (SAPS II) 35 ± 10, mean time on invasive mechanical ventilation 36 ± 26 days) under four different positive end-expiratory pressure (PEEP) levels ranging from 10 to 17 cmH2O. Only patients with moderate-severe ARDS or COPD exacerbation were included into the study, preferentally within the first days following intubation. Spearman's correlation coefficient for comparison between EIT-derived time constants and those from flow/volume curves was between 0.78 for tau (τ) calculated from the global impedance signal up to 0.83 for the mean of all pixelwise calculated regional impedance changes over the entire PEEP range. Furthermore, Bland-Altman analysis revealed a corresponding bias of 0.02 and 0.14 s within the limits of agreement ranging from - 0.50 to 0.65 s for the aforementioned calculation methods. In addition, exemplarily in patients with moderate-severe ARDS or COPD exacerbation, different PEEP levels were shown to have an influence on the distribution pattern of regional time constants. EIT-based determination of breath-by-breath regional expiratory time constants is technically feasible, reliable and valid in invasively ventilated patients with severe respiratory failure and provides a promising tool to individually adjust mechanical ventilation in response to the patterns of regional airflow obstruction. German Trial Register DRKS 00011650 , registered 01/31/17.

X Demographics

X Demographics

The data shown below were collected from the profiles of 45 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 15%
Student > Doctoral Student 9 13%
Student > Ph. D. Student 8 12%
Professor > Associate Professor 6 9%
Other 5 7%
Other 14 21%
Unknown 15 22%
Readers by discipline Count As %
Medicine and Dentistry 27 40%
Engineering 10 15%
Biochemistry, Genetics and Molecular Biology 2 3%
Nursing and Health Professions 2 3%
Agricultural and Biological Sciences 2 3%
Other 5 7%
Unknown 19 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2018.
All research outputs
#1,433,499
of 25,385,509 outputs
Outputs from Critical Care
#1,256
of 6,555 outputs
Outputs of similar age
#30,244
of 351,649 outputs
Outputs of similar age from Critical Care
#39
of 102 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,649 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.