↓ Skip to main content

Production of p-amino-l-phenylalanine (l-PAPA) from glycerol by metabolic grafting of Escherichia coli

Overview of attention for article published in Microbial Cell Factories, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Production of p-amino-l-phenylalanine (l-PAPA) from glycerol by metabolic grafting of Escherichia coli
Published in
Microbial Cell Factories, September 2018
DOI 10.1186/s12934-018-0996-6
Pubmed ID
Authors

Behrouz Mohammadi Nargesi, Natalie Trachtmann, Georg A. Sprenger, Jung-Won Youn

Abstract

The non-proteinogenic aromatic amino acid, p-amino-L-phenylalanine (L-PAPA) is a high-value product with a broad field of applications. In nature, L-PAPA occurs as an intermediate of the chloramphenicol biosynthesis pathway in Streptomyces venezuelae. Here we demonstrate that the model organism Escherichia coli can be transformed with metabolic grafting approaches to result in an improved L-PAPA producing strain. Escherichia coli K-12 cells were genetically engineered for the production of L-PAPA from glycerol as main carbon source. To do so, genes for a 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), and genes encoding a 4-amino-4-deoxychorismate mutase and a 4-amino-4-deoxyprephenate dehydrogenase (papB and papC, both from Streptomyces venezuelae) were cloned and expressed in E. coli W3110 (lab strain LJ110). In shake flask cultures with minimal medium this led to the formation of ca. 43 ± 2 mg l-1 of L-PAPA from 5 g l-1 glycerol. By expression of additional chromosomal copies of the tktA and glpX genes, and of plasmid-borne aroFBL genes in a tyrR deletion strain, an improved L-PAPA producer was obtained which gave a titer of 5.47 ± 0.4 g l-1 L-PAPA from 33.3 g l-1 glycerol (0.16 g L-PAPA/g of glycerol) in fed-batch cultivation (shake flasks). Finally, in a fed-batch fermenter cultivation, a titer of 16.7 g l-1 L-PAPA was obtained which is the highest so far reported value for this non-proteinogenic amino acid. Here we show that E. coli is a suitable chassis strain for L-PAPA production. Modifying the flux to the product and improved supply of precursor, by additional gene copies of glpX, tkt and aroFBL together with the deletion of the tyrR gene, increased the yield and titer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 33%
Student > Master 4 17%
Researcher 4 17%
Professor 2 8%
Other 1 4%
Other 2 8%
Unknown 3 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 38%
Agricultural and Biological Sciences 3 13%
Chemical Engineering 2 8%
Chemistry 2 8%
Engineering 2 8%
Other 2 8%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2018.
All research outputs
#15,019,263
of 23,103,903 outputs
Outputs from Microbial Cell Factories
#935
of 1,618 outputs
Outputs of similar age
#203,676
of 341,592 outputs
Outputs of similar age from Microbial Cell Factories
#14
of 34 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,618 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,592 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.