↓ Skip to main content

Constructing a molecular interaction network for thyroid cancer via large-scale text mining of gene and pathway events

Overview of attention for article published in BMC Systems Biology, December 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Constructing a molecular interaction network for thyroid cancer via large-scale text mining of gene and pathway events
Published in
BMC Systems Biology, December 2015
DOI 10.1186/1752-0509-9-s6-s5
Pubmed ID
Authors

Chengkun Wu, Jean-Marc Schwartz, Georg Brabant, Shao-Liang Peng, Goran Nenadic

Abstract

Biomedical studies need assistance from automated tools and easily accessible data to address the problem of the rapidly accumulating literature. Text-mining tools and curated databases have been developed to address such needs and they can be applied to improve the understanding of molecular pathogenesis of complex diseases like thyroid cancer. We have developed a system, PWTEES, which extracts pathway interactions from the literature utilizing an existing event extraction tool (TEES) and pathway named entity recognition (PathNER). We then applied the system on a thyroid cancer corpus and systematically extracted molecular interactions involving either genes or pathways. With the extracted information, we constructed a molecular interaction network taking genes and pathways as nodes. Using curated pathway information and network topological analyses, we highlight key genes and pathways involved in thyroid carcinogenesis. Mining events involving genes and pathways from the literature and integrating curated pathway knowledge can help improve the understanding of molecular interactions of complex diseases. The system developed for this study can be applied in studies other than thyroid cancer. The source code is freely available online at https://github.com/chengkun-wu/PWTEES.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 19%
Student > Bachelor 5 16%
Researcher 4 13%
Student > Ph. D. Student 3 10%
Other 1 3%
Other 3 10%
Unknown 9 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 16%
Computer Science 3 10%
Medicine and Dentistry 3 10%
Engineering 3 10%
Biochemistry, Genetics and Molecular Biology 2 6%
Other 5 16%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2016.
All research outputs
#13,374,110
of 23,577,761 outputs
Outputs from BMC Systems Biology
#435
of 1,143 outputs
Outputs of similar age
#181,492
of 392,477 outputs
Outputs of similar age from BMC Systems Biology
#15
of 46 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,143 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 392,477 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.