↓ Skip to main content

An efficient analytic approach in genome-wide identification of methylation quantitative trait loci response to fenofibrate treatment

Overview of attention for article published in BMC Proceedings, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An efficient analytic approach in genome-wide identification of methylation quantitative trait loci response to fenofibrate treatment
Published in
BMC Proceedings, September 2018
DOI 10.1186/s12919-018-0152-7
Pubmed ID
Authors

Jiayi Wu Cox, Devanshi Patel, Jaeyoon Chung, Congcong Zhu, Samantha Lent, Virginia Fisher, Achilleas Pitsillides, Lindsay Farrer, Xiaoling Zhang

Abstract

The study of DNA methylation quantitative trait loci (meQTLs) helps dissect regulatory mechanisms underlying genetic associations of human diseases. In this study, we conducted the first genome-wide examination of genetic drivers of methylation variation in response to a triglyceride-lowering treatment with fenofibrate (response-meQTL) by using an efficient analytic approach. Subjects (n = 429) from the GAW20 real data set with genotype and both pre- (visit 2) and post- (visit 4) fenofibrate treatment methylation measurements were included. Following the quality control steps of removing certain cytosine-phosphate-guanine (CpG) probes, the post-/premethylation changes (post/pre) were log transformed and the association was performed on 208,449 CpG sites. An additive linear mixed-effects model was used to test the association between each CpG probe and single nucleotide polymorphisms (SNPs) around ±1 Mb region, with age, sex, smoke, batch effect, and principal components included as covariates. Bonferroni correction was applied to define the significance threshold (p < 5.6 × 10- 10, given a total of 89,217,303 tests). Finally, we integrated our response-meQTL (re-meQTL) findings with the published genome-wide association study (GWAS) catalog of human diseases/traits. We identified 1087 SNPs as cis re-meQTLs associated with 610 CpG probes/sites located in 351 unique gene loci. Among these 1087 cis re-meQTL SNPs, 229 were unique and 6 were co-localized at 8 unique disease/trait loci reported in the GWAS catalog (enrichment p = 1.51 × 10- 23). Specifically, a lipid SNP, rs10903129, located in intron regions of gene TMEM57, was a re-meQTL (p = 3.12 × 10- 36) associated with the CpG probe cg09222892, which is in the upstream region of the gene RHCE, indicating a new target gene for rs10903129. In addition, we found that SNP rs12710728 has a suggestive association with cg17097782 (p = 1.77 × 10- 4), and that this SNP is in high linkage disequilibrium (LD) (R2 > 0.8) with rs7443270, which was previously reported to be associated with fenofibrate response (p = 5.00 × 10- 6). By using a novel analytic approach, we efficiently identified thousands of cis re-meQTLs that provide a unique resource for further characterizing functional roles and gene targets of the SNPs that are most responsive to fenofibrate treatment. Our efficient analytic approach can be extended to large response quantitative trait locus studies with large sample sizes and multiple time points data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 17%
Researcher 2 17%
Student > Master 2 17%
Student > Bachelor 1 8%
Unspecified 1 8%
Other 1 8%
Unknown 3 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 33%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Unspecified 1 8%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Other 0 0%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 October 2018.
All research outputs
#13,390,339
of 23,105,443 outputs
Outputs from BMC Proceedings
#165
of 377 outputs
Outputs of similar age
#168,470
of 341,520 outputs
Outputs of similar age from BMC Proceedings
#4
of 15 outputs
Altmetric has tracked 23,105,443 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 377 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,520 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.