↓ Skip to main content

Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices

Overview of attention for article published in BMC Genomics, September 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
1 news outlet
twitter
56 X users

Citations

dimensions_citation
124 Dimensions

Readers on

mendeley
71 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices
Published in
BMC Genomics, September 2018
DOI 10.1186/s12864-018-5094-y
Pubmed ID
Authors

Nicholas D Sanderson, Teresa L Street, Dona Foster, Jeremy Swann, Bridget L Atkins, Andrew J Brent, Martin A McNally, Sarah Oakley, Adrian Taylor, Tim E A Peto, Derrick W Crook, David W Eyre

Abstract

Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we report a real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint infections but potentially useful for any microbial sequencing, and compare detection by direct-from-clinical-sample metagenomic nanopore sequencing with Illumina sequencing and standard microbiological diagnostic techniques. DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high levels of host contamination and unavoidable background lab and kit contamination. The majority of DNA classified (> 90%) was host contamination and discarded. Using negative control filtering thresholds, the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected within minutes from initiation of sequencing. We demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data and use of this pipeline to show initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for prosthetic joint infections. The high proportion of human DNA in prosthetic joint infection extracts prevents full genome analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial resistance profiling. The nine samples sequenced in this pilot study have shown a proof of concept for sequencing and analysis that will enable us to investigate further sequencing to improve specificity and sensitivity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 56 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 21%
Researcher 15 21%
Student > Postgraduate 6 8%
Other 4 6%
Professor > Associate Professor 3 4%
Other 10 14%
Unknown 18 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 23%
Agricultural and Biological Sciences 10 14%
Medicine and Dentistry 8 11%
Immunology and Microbiology 8 11%
Computer Science 5 7%
Other 5 7%
Unknown 19 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 41. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2022.
All research outputs
#1,010,026
of 25,711,518 outputs
Outputs from BMC Genomics
#127
of 11,306 outputs
Outputs of similar age
#21,493
of 352,737 outputs
Outputs of similar age from BMC Genomics
#4
of 193 outputs
Altmetric has tracked 25,711,518 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,306 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,737 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 193 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.